File size: 29,218 Bytes
38b91ed 5915b56 4fd1faf 5915b56 61675e4 c549c79 dd55486 4fd1faf a84fd08 5915b56 2447e1e dd55486 1a4acf2 4348c1b 7a3c1b9 4348c1b dd55486 143f535 dc71c13 143f535 4fd1faf e94a65a 4fd1faf e94a65a 4fd1faf e94a65a 4fd1faf e94a65a ed9f086 7d319f7 e94a65a 4fd1faf 7966679 4fd1faf b7624fb 4fd1faf 08dfe16 a84fd08 08dfe16 b7624fb 08dfe16 a84fd08 08dfe16 d97f1a5 4fd1faf 9ccbbd3 a1fe592 c549c79 34f241e 9ccbbd3 c549c79 f401b99 4fd1faf 4bd2480 4fd1faf 18246b0 4fd1faf 720e26b 4fd1faf 720e26b 4fd1faf 0fa92dc d15b7c4 0fa92dc fdcd171 5c23370 2978d65 e9b77f7 ff295cd 9ccbbd3 fdcd171 862237e fdcd171 862237e ff295cd 9ccbbd3 ff295cd 862237e 5c23370 862237e fdcd171 862237e fdcd171 5c23370 4fc0c31 5c23370 862237e 4fc0c31 862237e 4fc0c31 5c23370 9e65353 3d5edd0 9e65353 5d335a2 143f535 5d335a2 9e65353 734888b c164669 5d335a2 734888b f773b12 5d335a2 eb52b2b 734888b 30e8c4c 5d335a2 734888b 9e65353 3d5edd0 f773b12 9e65353 f773b12 9e65353 9ccbbd3 20284f5 9e65353 9ccbbd3 9e65353 906dab9 9e65353 7a3c1b9 af2b95e c08a424 af2b95e c08a424 5988bd9 e9b77f7 2978d65 af2b95e bc35ffb e9b77f7 2978d65 a5ad8a0 7c8b752 a5ad8a0 9e65353 7a3c1b9 0968912 7a3c1b9 bc35ffb af2b95e 2afe88b 9ccbbd3 e8bd3ea 9ccbbd3 e8bd3ea 76f796b 2afe88b ba34bb6 2d1ae5b ba34bb6 2d1ae5b ba34bb6 797e71f ba34bb6 2d1ae5b 797e71f ba0e518 2d1ae5b ba0e518 2d1ae5b ba34bb6 0bc4f0b 4378340 7a3c1b9 1f946e5 9ccbbd3 7a3c1b9 1f946e5 4378340 b48099f 4378340 97a98d1 7a3c1b9 4378340 7a3c1b9 97a98d1 4378340 97a98d1 4378340 97a98d1 7a3c1b9 97a98d1 7a3c1b9 4378340 7a3c1b9 4378340 1f946e5 7a3c1b9 97a98d1 2978d65 7a3c1b9 1f946e5 4fd1faf 2709af2 4fd1faf 2709af2 4fd1faf 2709af2 4fd1faf 51adc94 5915b56 18246b0 5915b56 18246b0 8c3be27 18246b0 c549c79 f401b99 c549c79 471ce47 53b6bfb 18246b0 53b6bfb 18246b0 6ff0d20 18246b0 5915b56 50980d2 18246b0 50980d2 18246b0 fdcd171 7795f59 45597c2 31a2ec9 349c15b e9b77f7 4b21d68 ba34bb6 4b21d68 ba34bb6 c30f539 4b21d68 734888b 2978d65 eea7054 7795f59 f7dfd44 7795f59 0968912 7795f59 ba34bb6 7795f59 f74635c 31a2ec9 f9d6dfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 |
import logging
from transformers import Pipeline
import numpy as np
import torch
import nltk
nltk.download("averaged_perceptron_tagger")
nltk.download("averaged_perceptron_tagger_eng")
nltk.download("stopwords")
from nltk.chunk import conlltags2tree
from nltk import pos_tag
from nltk.tree import Tree
import torch.nn.functional as F
import re, string
stop_words = set(nltk.corpus.stopwords.words("english"))
DEBUG = False
punctuation = (
string.punctuation
+ "«»—…“”"
+ "—."
+ "–"
+ "’"
+ "‘"
+ "´"
+ "•"
+ "°"
+ "»"
+ "“"
+ "”"
+ "–"
+ "—"
+ "‘’“”„«»•–—―‣◦…§¶†‡‰′″〈〉"
)
# List of additional "strange" punctuation marks
# additional_punctuation = "‘’“”„«»•–—―‣◦…§¶†‡‰′″〈〉"
WHITESPACE_RULES = {
"fr": {
"pct_no_ws_before": [".", ",", ")", "]", "}", "°", "...", ".-", "%"],
"pct_no_ws_after": ["(", "[", "{"],
"pct_no_ws_before_after": ["'", "-"],
"pct_number": [".", ","],
},
"de": {
"pct_no_ws_before": [
".",
",",
")",
"]",
"}",
"°",
"...",
"?",
"!",
":",
";",
".-",
"%",
],
"pct_no_ws_after": ["(", "[", "{"],
"pct_no_ws_before_after": ["'", "-"],
"pct_number": [".", ","],
},
"other": {
"pct_no_ws_before": [
".",
",",
")",
"]",
"}",
"°",
"...",
"?",
"!",
":",
";",
".-",
"%",
],
"pct_no_ws_after": ["(", "[", "{"],
"pct_no_ws_before_after": ["'", "-"],
"pct_number": [".", ","],
},
}
def tokenize(text: str, language: str = "other") -> list[str]:
"""Apply whitespace rules to the given text and language, separating it into tokens.
Args:
text (str): The input text to separate into a list of tokens.
language (str): Language of the text.
Returns:
list[str]: List of tokens with punctuation as separate tokens.
"""
# text = add_spaces_around_punctuation(text)
if not text:
return []
if language not in WHITESPACE_RULES:
# Default behavior for languages without specific rules:
# tokenize using standard whitespace splitting
language = "other"
wsrules = WHITESPACE_RULES[language]
tokenized_text = []
current_token = ""
for char in text:
if char in wsrules["pct_no_ws_before_after"]:
if current_token:
tokenized_text.append(current_token)
tokenized_text.append(char)
current_token = ""
elif char in wsrules["pct_no_ws_before"] or char in wsrules["pct_no_ws_after"]:
if current_token:
tokenized_text.append(current_token)
tokenized_text.append(char)
current_token = ""
elif char.isspace():
if current_token:
tokenized_text.append(current_token)
current_token = ""
else:
current_token += char
if current_token:
tokenized_text.append(current_token)
return tokenized_text
def normalize_text(text):
# Remove spaces and tabs for the search but keep newline characters
return re.sub(r"[ \t]+", "", text)
def find_entity_indices(article_text, search_text):
# Normalize texts by removing spaces and tabs
normalized_article = normalize_text(article_text)
normalized_search = normalize_text(search_text)
# Initialize a list to hold all start and end indices
indices = []
# Find all occurrences of the search text in the normalized article text
start_index = 0
while True:
start_index = normalized_article.find(normalized_search, start_index)
if start_index == -1:
break
# Calculate the actual start and end indices in the original article text
original_chars = 0
original_start_index = 0
for i in range(start_index):
while article_text[original_start_index] in (" ", "\t"):
original_start_index += 1
if article_text[original_start_index] not in (" ", "\t", "\n"):
original_chars += 1
original_start_index += 1
original_end_index = original_start_index
search_chars = 0
while search_chars < len(normalized_search):
if article_text[original_end_index] not in (" ", "\t", "\n"):
search_chars += 1
original_end_index += 1 # Increment to include the last character
# Append the found indices to the list
if article_text[original_start_index] == " ":
original_start_index += 1
indices.append((original_start_index, original_end_index))
# Move start_index to the next position to continue searching
start_index += 1
return indices
def get_entities(tokens, tags, confidences, text):
tags = [tag.replace("S-", "B-").replace("E-", "I-") for tag in tags]
pos_tags = [pos for token, pos in pos_tag(tokens)]
for i in range(1, len(tags)):
# If a 'B-' tag is followed by another 'B-' without an 'O' in between, change the second to 'I-'
if tags[i].startswith("B-") and tags[i - 1].startswith("I-"):
tags[i] = "I-" + tags[i][2:] # Change 'B-' to 'I-' for the same entity type
conlltags = [(token, pos, tg) for token, pos, tg in zip(tokens, pos_tags, tags)]
ne_tree = conlltags2tree(conlltags)
entities = []
idx: int = 0
already_done = []
for subtree in ne_tree:
# skipping 'O' tags
if isinstance(subtree, Tree):
original_label = subtree.label()
original_string = " ".join([token for token, pos in subtree.leaves()])
for indices in find_entity_indices(text, original_string):
entity_start_position = indices[0]
entity_end_position = indices[1]
if (
"_".join(
[original_label, original_string, str(entity_start_position)]
)
in already_done
):
continue
else:
already_done.append(
"_".join(
[
original_label,
original_string,
str(entity_start_position),
]
)
)
if len(text[entity_start_position:entity_end_position].strip()) < len(
text[entity_start_position:entity_end_position]
):
entity_start_position = (
entity_start_position
+ len(text[entity_start_position:entity_end_position])
- len(text[entity_start_position:entity_end_position].strip())
)
entities.append(
{
"type": original_label,
"confidence_ner": round(
np.average(confidences[idx : idx + len(subtree)]) * 100, 2
),
"index": (idx, idx + len(subtree)),
"surface": text[
entity_start_position:entity_end_position
], # original_string,
"lOffset": entity_start_position,
"rOffset": entity_end_position,
}
)
idx += len(subtree)
# Update the current character position
# We add the length of the original string + 1 (for the space)
else:
token, pos = subtree
# If it's not a named entity, we still need to update the character
# position
idx += 1
return entities
def realign(
text_sentence, out_label_preds, softmax_scores, tokenizer, reverted_label_map
):
preds_list, words_list, confidence_list = [], [], []
word_ids = tokenizer(text_sentence, is_split_into_words=True).word_ids()
for idx, word in enumerate(text_sentence):
beginning_index = word_ids.index(idx)
try:
preds_list.append(reverted_label_map[out_label_preds[beginning_index]])
confidence_list.append(max(softmax_scores[beginning_index]))
except Exception as ex: # the sentence was longer then max_length
preds_list.append("O")
confidence_list.append(0.0)
words_list.append(word)
return words_list, preds_list, confidence_list
def add_spaces_around_punctuation(text):
# Add a space before and after all punctuation
all_punctuation = string.punctuation + punctuation
return re.sub(r"([{}])".format(re.escape(all_punctuation)), r" \1 ", text)
def attach_comp_to_closest(entities):
# Define valid entity types that can receive a "comp.function" or "comp.name" attachment
valid_entity_types = {"org", "pers", "org.ent", "pers.ind"}
# Separate "comp.function" and "comp.name" entities from other entities
comp_entities = [ent for ent in entities if ent["type"].startswith("comp")]
other_entities = [ent for ent in entities if not ent["type"].startswith("comp")]
for comp_entity in comp_entities:
closest_entity = None
min_distance = float("inf")
# Find the closest non-"comp" entity that is valid for attaching
for other_entity in other_entities:
# Calculate distance between the comp entity and the other entity
if comp_entity["lOffset"] > other_entity["rOffset"]:
distance = comp_entity["lOffset"] - other_entity["rOffset"]
elif comp_entity["rOffset"] < other_entity["lOffset"]:
distance = other_entity["lOffset"] - comp_entity["rOffset"]
else:
distance = 0 # They overlap or touch
# Ensure the entity type is valid and check for minimal distance
if (
distance < min_distance
and other_entity["type"].split(".")[0] in valid_entity_types
):
min_distance = distance
closest_entity = other_entity
# Attach the "comp.function" or "comp.name" if a valid entity is found
if closest_entity:
suffix = comp_entity["type"].split(".")[
-1
] # Extract the suffix (e.g., 'name', 'function')
closest_entity[suffix] = comp_entity["surface"] # Attach the text
return other_entities
def conflicting_context(comp_entity, target_entity):
"""
Determines if there is a conflict between the comp_entity and the target entity.
Prevents incorrect name and function attachments by using a rule-based approach.
"""
# Case 1: Check for correct function attachment to person or organization entities
if comp_entity["type"].startswith("comp.function"):
if not ("pers" in target_entity["type"] or "org" in target_entity["type"]):
return True # Conflict: Function should only attach to persons or organizations
# Case 2: Avoid attaching comp.* entities to non-person, non-organization types (like locations)
if "loc" in target_entity["type"]:
return True # Conflict: comp.* entities should not attach to locations or similar types
return False # No conflict
def extract_name_from_text(text, partial_name):
"""
Extracts the full name from the entity's text based on the partial name.
This function assumes that the full name starts with capitalized letters and does not
include any words that come after the partial name.
"""
# Split the text and partial name into words
words = tokenize(text)
partial_words = partial_name.split()
if DEBUG:
print("text:", text)
if DEBUG:
print("partial_name:", partial_name)
# Find the position of the partial name in the word list
for i, word in enumerate(words):
if DEBUG:
print(words, "---", words[i : i + len(partial_words)])
if words[i : i + len(partial_words)] == partial_words:
# Initialize full name with the partial name
full_name = partial_words[:]
if DEBUG:
print("full_name:", full_name)
# Check previous words and only add capitalized words (skip lowercase words)
j = i - 1
while j >= 0 and words[j][0].isupper():
full_name.insert(0, words[j])
j -= 1
if DEBUG:
print("full_name:", full_name)
# Return only the full name up to the partial name (ignore words after the name)
return " ".join(full_name).strip() # Join the words to form the full name
# If not found, return the original text (as a fallback)
return text.strip()
def repair_names_in_entities(entities):
"""
This function repairs the names in the entities by extracting the full name
from the text of the entity if a partial name (e.g., 'Washington') is incorrectly attached.
"""
for entity in entities:
if "name" in entity and "pers" in entity["type"]:
name = entity["name"]
text = entity["surface"]
# Check if the attached name is part of the entity's text
if name in text:
# Extract the full name from the text by splitting around the attached name
full_name = extract_name_from_text(entity["surface"], name)
entity["name"] = (
full_name # Replace the partial name with the full name
)
# if "name" not in entity:
# entity["name"] = entity["surface"]
return entities
def clean_coarse_entities(entities):
"""
This function removes entities that are not useful for the NEL process.
"""
# Define a set of entity types that are considered useful for NEL
useful_types = {
"pers", # Person
"loc", # Location
"org", # Organization
"date", # Product
"time", # Time
}
# Filter out entities that are not in the useful_types set unless they are comp.* entities
cleaned_entities = [
entity
for entity in entities
if entity["type"] in useful_types or "comp" in entity["type"]
]
return cleaned_entities
def postprocess_entities(entities):
# Step 1: Filter entities with the same text, keeping the one with the most dots in the 'entity' field
entity_map = {}
# Loop over the entities and prioritize the one with the most dots
for entity in entities:
entity_text = entity["surface"]
num_dots = entity["type"].count(".")
# If the entity text is new, or this entity has more dots, update the map
if (
entity_text not in entity_map
or entity_map[entity_text]["type"].count(".") < num_dots
):
entity_map[entity_text] = entity
# Collect the filtered entities from the map
filtered_entities = list(entity_map.values())
# Step 2: Attach "comp.function" entities to the closest other entities
filtered_entities = attach_comp_to_closest(filtered_entities)
if DEBUG:
print("After attach_comp_to_closest:", filtered_entities, "\n")
filtered_entities = repair_names_in_entities(filtered_entities)
if DEBUG:
print("After repair_names_in_entities:", filtered_entities, "\n")
# Step 3: Remove entities that are not useful for NEL
# filtered_entities = clean_coarse_entities(filtered_entities)
# filtered_entities = remove_blacklisted_entities(filtered_entities)
return filtered_entities
def remove_included_entities(entities):
# Loop through entities and remove those whose text is included in another with the same label
final_entities = []
for i, entity in enumerate(entities):
is_included = False
for other_entity in entities:
if entity["surface"] != other_entity["surface"]:
if "comp" in other_entity["type"]:
# Check if entity's text is a substring of another entity's text
if entity["surface"] in other_entity["surface"]:
is_included = True
break
elif (
entity["type"].split(".")[0] in other_entity["type"].split(".")[0]
or other_entity["type"].split(".")[0]
in entity["type"].split(".")[0]
):
if entity["surface"] in other_entity["surface"]:
is_included = True
if not is_included:
final_entities.append(entity)
return final_entities
def refine_entities_with_coarse(all_entities, coarse_entities):
"""
Looks through all entities and refines them based on the coarse entities.
If a surface match is found in the coarse entities and the types match,
the entity's confidence_ner and type are updated based on the coarse entity.
"""
# Create a dictionary for coarse entities based on surface and type for quick lookup
coarse_lookup = {}
for coarse_entity in coarse_entities:
key = (coarse_entity["surface"], coarse_entity["type"].split(".")[0])
coarse_lookup[key] = coarse_entity
# Iterate through all entities and compare with the coarse entities
for entity in all_entities:
key = (
entity["surface"],
entity["type"].split(".")[0],
) # Use the coarse type for comparison
if key in coarse_lookup:
coarse_entity = coarse_lookup[key]
# If a match is found, update the confidence_ner and type in the entity
if entity["confidence_ner"] < coarse_entity["confidence_ner"]:
entity["confidence_ner"] = coarse_entity["confidence_ner"]
entity["type"] = coarse_entity[
"type"
] # Update the type if the confidence is higher
# No need to append to refined_entities, we're modifying in place
for entity in all_entities:
entity["type"] = entity["type"].split(".")[0]
return all_entities
def remove_trailing_stopwords(entities):
"""
This function removes stopwords and punctuation from both the beginning and end of each entity's text
and repairs the lOffset and rOffset accordingly.
"""
if DEBUG:
print(f"Initial entities: {len(entities)}")
new_entities = []
for entity in entities:
if "comp" not in entity["type"]:
entity_text = entity["surface"]
original_len = len(entity_text)
# Initial offsets
lOffset = entity.get("lOffset", 0)
rOffset = entity.get("rOffset", original_len)
# Remove stopwords and punctuation from the beginning
i = 0
while entity_text and (
entity_text.split()[0].lower() in stop_words
or entity_text[0] in punctuation
):
if entity_text.split()[0].lower() in stop_words:
stopword_len = (
len(entity_text.split()[0]) + 1
) # Adjust length for stopword and following space
entity_text = entity_text[stopword_len:] # Remove leading stopword
lOffset += stopword_len # Adjust the left offset
if DEBUG:
print(
f"Removed leading stopword from entity: {entity['surface']} --> {entity_text} ({entity['type']}"
)
elif entity_text[0] in punctuation:
entity_text = entity_text[1:] # Remove leading punctuation
lOffset += 1 # Adjust the left offset
if DEBUG:
print(
f"Removed leading punctuation from entity: {entity['surface']} --> {entity_text} ({entity['type']}"
)
i += 1
i = 0
# Remove stopwords and punctuation from the end
iteration = 0
max_iterations = len(entity_text) # Prevent infinite loops
while entity_text and iteration < max_iterations:
# Check if the last word is a stopword or the last character is punctuation
last_word = entity_text.split()[-1] if entity_text.split() else ""
last_char = entity_text[-1]
if last_word.lower() in stop_words:
# Remove trailing stopword and adjust rOffset
stopword_len = len(last_word) + 1 # Include space before stopword
entity_text = entity_text[:-stopword_len].rstrip()
rOffset -= stopword_len
if DEBUG:
print(
f"Removed trailing stopword from entity: {entity_text} (rOffset={rOffset})"
)
elif last_char in punctuation:
# Remove trailing punctuation and adjust rOffset
entity_text = entity_text[:-1].rstrip()
rOffset -= 1
if DEBUG:
print(
f"Removed trailing punctuation from entity: {entity_text} (rOffset={rOffset})"
)
else:
# Exit loop if neither stopwords nor punctuation are found
break
iteration += 1
# print(f"ITERATION: {iteration} [{entity['surface']}] for {entity_text}")
if len(entity_text.strip()) == 1:
entities.remove(entity)
if DEBUG:
print(f"Skipping entity: {entity_text}")
continue
# Skip certain entities based on rules
if entity_text in string.punctuation:
if DEBUG:
print(f"Skipping entity: {entity_text}")
entities.remove(entity)
continue
# check now if its in stopwords
if entity_text.lower() in stop_words:
if DEBUG:
print(f"Skipping entity: {entity_text}")
entities.remove(entity)
continue
# check now if the entire entity is a list of stopwords:
if all([word.lower() in stop_words for word in entity_text.split()]):
if DEBUG:
print(f"Skipping entity: {entity_text}")
entities.remove(entity)
continue
# Check if the entire entity is made up of stopwords characters
if all(
[char.lower() in stop_words for char in entity_text if char.isalpha()]
):
if DEBUG:
print(
f"Skipping entity: {entity_text} (all characters are stopwords)"
)
entities.remove(entity)
continue
# check now if all entity is in a list of punctuation
if all([word in string.punctuation for word in entity_text.split()]):
if DEBUG:
print(
f"Skipping entity: {entity_text} (all characters are punctuation)"
)
entities.remove(entity)
continue
if all(
[
char.lower() in string.punctuation
for char in entity_text
if char.isalpha()
]
):
if DEBUG:
print(
f"Skipping entity: {entity_text} (all characters are punctuation)"
)
entities.remove(entity)
continue
# if it's a number and "time" no in it, then continue
if entity_text.isdigit() and "time" not in entity["type"]:
if DEBUG:
print(f"Skipping entity: {entity_text}")
entities.remove(entity)
continue
if entity_text.startswith(" "):
entity_text = entity_text[1:]
# update lOffset, rOffset
lOffset += 1
if entity_text.endswith(" "):
entity_text = entity_text[:-1]
# update lOffset, rOffset
rOffset -= 1
# Update the entity surface and offsets
entity["surface"] = entity_text
entity["lOffset"] = lOffset
entity["rOffset"] = rOffset
# Remove the entity if the surface is empty after cleaning
if len(entity["surface"].strip()) == 0:
if DEBUG:
print(f"Deleted entity: {entity['surface']}")
entities.remove(entity)
else:
new_entities.append(entity)
if DEBUG:
print(f"Remained entities: {len(new_entities)}")
return new_entities
class MultitaskTokenClassificationPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "text" in kwargs:
preprocess_kwargs["text"] = kwargs["text"]
self.label_map = self.model.config.label_map
self.id2label = {
task: {id_: label for label, id_ in labels.items()}
for task, labels in self.label_map.items()
}
return preprocess_kwargs, {}, {}
def preprocess(self, text, **kwargs):
tokenized_inputs = self.tokenizer(
text, padding="max_length", truncation=True, max_length=512
)
text_sentence = tokenize(add_spaces_around_punctuation(text))
return tokenized_inputs, text_sentence, text
def _forward(self, inputs):
inputs, text_sentences, text = inputs
input_ids = torch.tensor([inputs["input_ids"]], dtype=torch.long).to(
self.model.device
)
attention_mask = torch.tensor([inputs["attention_mask"]], dtype=torch.long).to(
self.model.device
)
with torch.no_grad():
outputs = self.model(input_ids, attention_mask)
return outputs, text_sentences, text
def is_within(self, entity1, entity2):
"""Check if entity1 is fully within the bounds of entity2."""
return (
entity1["lOffset"] >= entity2["lOffset"]
and entity1["rOffset"] <= entity2["rOffset"]
)
def postprocess(self, outputs, **kwargs):
"""
Postprocess the outputs of the model
:param outputs:
:param kwargs:
:return:
"""
tokens_result, text_sentence, text = outputs
predictions = {}
confidence_scores = {}
for task, logits in tokens_result.logits.items():
predictions[task] = torch.argmax(logits, dim=-1).tolist()[0]
confidence_scores[task] = F.softmax(logits, dim=-1).tolist()[0]
entities = {}
for task in predictions.keys():
words_list, preds_list, confidence_list = realign(
text_sentence,
predictions[task],
confidence_scores[task],
self.tokenizer,
self.id2label[task],
)
entities[task] = get_entities(words_list, preds_list, confidence_list, text)
# add titles to comp entities
# from pprint import pprint
# print("Before:")
# pprint(entities)
all_entities = []
coarse_entities = []
for key in entities:
if key in ["NE-COARSE-LIT"]:
coarse_entities = entities[key]
all_entities.extend(entities[key])
if DEBUG:
print(all_entities)
# print("After remove_included_entities:")
all_entities = remove_included_entities(all_entities)
if DEBUG:
print("After remove_included_entities:", all_entities)
all_entities = remove_trailing_stopwords(all_entities)
if DEBUG:
print("After remove_trailing_stopwords:", all_entities)
all_entities = postprocess_entities(all_entities)
if DEBUG:
print("After postprocess_entities:", all_entities)
all_entities = refine_entities_with_coarse(all_entities, coarse_entities)
if DEBUG:
print("After refine_entities_with_coarse:", all_entities)
# print("After attach_comp_to_closest:")
# pprint(all_entities)
# print("\n")
return all_entities
|