|
from transformers import PretrainedConfig |
|
import torch |
|
|
|
class ImpressoConfig(PretrainedConfig): |
|
model_type = "stacked_bert" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
pad_token_id=0, |
|
position_embedding_type="absolute", |
|
use_cache=True, |
|
classifier_dropout=None, |
|
pretrained_config=None, |
|
values_override=None, |
|
label_map=None, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.position_embedding_type = position_embedding_type |
|
self.use_cache = use_cache |
|
self.classifier_dropout = classifier_dropout |
|
self.pretrained_config = pretrained_config |
|
self.label_map = label_map |
|
|
|
self.values_override = values_override or {} |
|
self.outputs = { |
|
"logits": {"shape": [None, None, self.hidden_size], "dtype": "float32"} |
|
} |
|
|
|
@classmethod |
|
def is_torch_support_available(cls): |
|
""" |
|
Indicate whether Torch support is available for this configuration. |
|
Required for compatibility with certain parts of the Transformers library. |
|
""" |
|
return True |
|
|
|
@classmethod |
|
def patch_ops(self): |
|
""" |
|
A method required by some Hugging Face utilities to modify operator mappings. |
|
Currently, it performs no operation and is included for compatibility. |
|
Args: |
|
ops: A dictionary of operations to potentially patch. |
|
Returns: |
|
The (unmodified) ops dictionary. |
|
""" |
|
return None |
|
|
|
def generate_dummy_inputs(self, tokenizer, batch_size=1, seq_length=8, framework="pt"): |
|
""" |
|
Generate dummy inputs for testing or export. |
|
Args: |
|
tokenizer: The tokenizer used to tokenize inputs. |
|
batch_size: Number of input samples in the batch. |
|
seq_length: Length of each sequence. |
|
framework: Framework ("pt" for PyTorch, "tf" for TensorFlow). |
|
Returns: |
|
Dummy inputs as a dictionary. |
|
""" |
|
if framework == "pt": |
|
input_ids = torch.randint( |
|
low=0, |
|
high=self.vocab_size, |
|
size=(batch_size, seq_length), |
|
dtype=torch.long |
|
) |
|
attention_mask = torch.ones((batch_size, seq_length), dtype=torch.long) |
|
return {"input_ids": input_ids, "attention_mask": attention_mask} |
|
else: |
|
raise ValueError("Framework '{}' not supported.".format(framework)) |
|
|
|
|
|
ImpressoConfig.register_for_auto_class() |
|
|