File size: 5,483 Bytes
5768649
 
 
 
 
 
 
f28a8ac
 
 
5768649
 
77163e1
 
5768649
 
 
be205c4
5768649
 
 
 
 
 
 
 
 
 
 
 
 
77163e1
5768649
ab07383
 
 
 
77163e1
 
5768649
77163e1
 
 
 
5768649
 
 
 
 
 
 
 
 
77163e1
 
5768649
 
 
 
 
 
 
 
 
 
ab07383
 
 
 
5768649
 
77163e1
 
5768649
 
 
 
 
 
 
 
 
 
 
77163e1
 
5768649
 
6651605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5768649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78cf30f
 
 
 
 
 
 
 
 
 
54fc15c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language:
- he
library_name: sentence-transformers
---


# imvladikon/sentence-transformers-alephbert[WIP]

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Current version is distillation of the [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) model on private corpus.

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

sentences = [
"讛诐 讛讬讜 砖诪讞讬诐 诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐.",
"诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐 讛讬讛 诪讗讜讚 诪砖诪讞 诇讛诐."
]

model = SentenceTransformer('imvladikon/sentence-transformers-alephbert')
embeddings = model.encode(sentences)


print(cos_sim(*tuple(embeddings)).item())
# 0.883316159248352
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
import torch
from torch import nn
from transformers import AutoTokenizer, AutoModel


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = [
"讛诐 讛讬讜 砖诪讞讬诐 诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐.",
"诇专讗讜转 讗转 讛讗讬专讜注 砖讛转拽讬讬诐 讛讬讛 诪讗讜讚 诪砖诪讞 诇讛诐."
]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('imvladikon/sentence-transformers-alephbert')
model = AutoModel.from_pretrained('imvladikon/sentence-transformers-alephbert')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

cos_sim = nn.CosineSimilarity(dim=0, eps=1e-6)
print(cos_sim(sentence_embeddings[0], sentence_embeddings[1]).item())
```

```
def ppl_naive(text, model, tokenizer):
    input = tokenizer.encode(text, return_tensors="pt")
    loss = model(input, labels=input)[0]
    return torch.exp(loss).item()

text = """{} 讛讬讗 注讬专 讛讘讬专讛 砖诇 诪讚讬谞转 讬砖专讗诇, 讜讛注讬专 讛讙讚讜诇讛 讘讬讜转专 讘讬砖专讗诇 讘讙讜讚诇 讛讗讜讻诇讜住讬讬讛"""

for word in ["讞讬驻讛", "讬专讜砖诇讬诐", "转诇 讗讘讬讘"]:
  print(ppl_naive(text.format(word), model, tokenizer))

# 10.181422233581543
# 9.743313789367676
# 10.171016693115234
```


## Evaluation Results

For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 44999 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 44999,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

```bibtex
@misc{seker2021alephberta,
      title={AlephBERT:A Hebrew Large Pre-Trained Language Model to Start-off your Hebrew NLP Application With}, 
      author={Amit Seker and Elron Bandel and Dan Bareket and Idan Brusilovsky and Refael Shaked Greenfeld and Reut Tsarfaty},
      year={2021},
      eprint={2104.04052},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```bibtex
@misc{reimers2019sentencebert,
      title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks}, 
      author={Nils Reimers and Iryna Gurevych},
      year={2019},
      eprint={1908.10084},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```