inetnuc commited on
Commit
f50cf38
1 Parent(s): 4e83804

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -4
README.md CHANGED
@@ -11,12 +11,51 @@ tags:
11
  - gguf
12
  ---
13
 
14
- # Uploaded model
15
 
16
  - **Developed by:** inetnuc
17
  - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-bnb-4bit
19
 
20
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
11
  - gguf
12
  ---
13
 
14
+ # LLAMA-3.1 8B Chat Nuclear Model
15
 
16
  - **Developed by:** inetnuc
17
  - **License:** apache-2.0
18
+ - **Finetuned from model:** unsloth/Meta-Llama-3.1-8B-bnb-4bit
19
 
20
+ This LLAMA-3.1 model was finetuned to enhance capabilities in text generation for nuclear-related topics. The training was accelerated using [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library, achieving a 2x faster performance.
21
+
22
+ ## Finetuning Process
23
+ The model was finetuned using the Unsloth library, leveraging its efficient training capabilities. The process included the following steps:
24
+
25
+ 1. **Data Preparation:** Loaded and preprocessed nuclear-related data.
26
+ 2. **Model Loading:** Utilized `unsloth/llama-3-8b-bnb-4bit` as the base model.
27
+ 3. **LoRA Patching:** Applied LoRA (Low-Rank Adaptation) for efficient training.
28
+ 4. **Training:** Finetuned the model using Hugging Face's TRL library with optimized hyperparameters.
29
+
30
+ ## Model Details
31
+
32
+ - **Base Model:** `unsloth/llama-3.1-8b-bnb-4bit`
33
+ - **Language:** English (`en`)
34
+ - **License:** Apache-2.0
35
+
36
+ ## Author
37
+
38
+ **MUSTAFA UMUT OZBEK**
39
+
40
+ **https://www.linkedin.com/in/mustafaumutozbek/**
41
+ **https://x.com/m_umut_ozbek**
42
+
43
+
44
+ ## Usage
45
+
46
+ ### Loading the Model
47
+
48
+ You can load the model and tokenizer using the following code snippet:
49
+
50
+ ```python
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+
53
+ # Load the tokenizer and model
54
+ tokenizer = AutoTokenizer.from_pretrained("inetnuc/Llama-3.1-8B-bnb-4bit-chat-nuclear-lora-f16")
55
+ model = AutoModelForCausalLM.from_pretrained("inetnuc/Llama-3.1-8B-bnb-4bit-chat-nuclear-lora-f16")
56
+
57
+ # Example of generating text
58
+ inputs = tokenizer("what is the iaea approach for cyber security?", return_tensors="pt")
59
+ outputs = model.generate(**inputs, max_new_tokens=128)
60
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
61