Update README.md
Browse files
README.md
CHANGED
@@ -33,25 +33,6 @@ The model was finetuned using the Unsloth library, leveraging its efficient trai
|
|
33 |
- **Language**: English (`en`)
|
34 |
- **License**: Apache-2.0
|
35 |
|
36 |
-
## Usage
|
37 |
-
|
38 |
-
### Loading the Model
|
39 |
-
|
40 |
-
You can load the model and tokenizer using the following code snippet:
|
41 |
-
|
42 |
-
```python
|
43 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
44 |
-
|
45 |
-
# Load the tokenizer and model
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained("inetnuc/llama-3-8b-chat-nuclear")
|
47 |
-
model = AutoModelForCausalLM.from_pretrained("inetnuc/llama-3-8b-chat-nuclear")
|
48 |
-
|
49 |
-
# Example of generating text
|
50 |
-
inputs = tokenizer("what is the iaea approach for cyber security?", return_tensors="pt")
|
51 |
-
outputs = model.generate(**inputs, max_new_tokens=128)
|
52 |
-
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
53 |
-
|
54 |
-
|
55 |
## Files and Versions
|
56 |
|
57 |
| File Name | Description |
|
@@ -81,3 +62,25 @@ MUSTAFA UMUT OZBEK
|
|
81 |
## Contact
|
82 |
https://www.linkedin.com/in/mustafaumutozbek/
|
83 |
https://x.com/m_umut_ozbek
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
- **Language**: English (`en`)
|
34 |
- **License**: Apache-2.0
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
## Files and Versions
|
37 |
|
38 |
| File Name | Description |
|
|
|
62 |
## Contact
|
63 |
https://www.linkedin.com/in/mustafaumutozbek/
|
64 |
https://x.com/m_umut_ozbek
|
65 |
+
|
66 |
+
|
67 |
+
## Usage
|
68 |
+
|
69 |
+
### Loading the Model
|
70 |
+
|
71 |
+
You can load the model and tokenizer using the following code snippet:
|
72 |
+
|
73 |
+
```python
|
74 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
75 |
+
|
76 |
+
# Load the tokenizer and model
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained("inetnuc/llama-3-8b-chat-nuclear")
|
78 |
+
model = AutoModelForCausalLM.from_pretrained("inetnuc/llama-3-8b-chat-nuclear")
|
79 |
+
|
80 |
+
# Example of generating text
|
81 |
+
inputs = tokenizer("what is the iaea approach for cyber security?", return_tensors="pt")
|
82 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
83 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
84 |
+
|
85 |
+
|
86 |
+
|