joydeep bhattacharjee commited on
Commit
b97106e
1 Parent(s): 861b010

odia model version1

Browse files
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: or
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: Joydeep Bhattacharjee XLSR Wav2Vec2 Large 53 Odia
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice as
21
+ type: common_voice
22
+ args: or
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 55.07
27
+ ---
28
+ # Wav2Vec2-Large-XLSR-53-Odia
29
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice).
30
+ When using this model, make sure that your speech input is sampled at 16kHz.
31
+ ## Usage
32
+ The model can be used directly (without a language model) as follows:
33
+ ```python
34
+ import torch
35
+ import torchaudio
36
+ from datasets import load_dataset
37
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
38
+ test_dataset = load_dataset("common_voice", "or", split="test[:2%]")
39
+ processor = Wav2Vec2Processor.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Odia")
40
+ model = Wav2Vec2ForCTC.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Odia")
41
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
42
+ # Preprocessing the datasets.
43
+ # We need to read the aduio files as arrays
44
+ def speech_file_to_array_fn(batch):
45
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
46
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
47
+ return batch
48
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
49
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
50
+ with torch.no_grad():
51
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
52
+ predicted_ids = torch.argmax(logits, dim=-1)
53
+ print("Prediction:", processor.batch_decode(predicted_ids))
54
+ print("Reference:", test_dataset["sentence"][:2])
55
+ ```
56
+ ## Evaluation
57
+ The model can be evaluated as follows on the Assamese test data of Common Voice.
58
+ ```python
59
+ import torch
60
+ import torchaudio
61
+ from datasets import load_dataset, load_metric
62
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
63
+ import re
64
+ test_dataset = load_dataset("common_voice", "or", split="test")
65
+ wer = load_metric("wer")
66
+ processor = Wav2Vec2Processor.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Odia")
67
+ model = Wav2Vec2ForCTC.from_pretrained("infinitejoy/Wav2Vec2-Large-XLSR-53-Odia")
68
+ model.to("cuda")
69
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\।\–]'
70
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
71
+ # Preprocessing the datasets.
72
+ # We need to read the aduio files as arrays
73
+ def speech_file_to_array_fn(batch):
74
+ batch["sentence"] = re.sub('’ ',' ',batch["sentence"])
75
+ batch["sentence"] = re.sub(' ‘',' ',batch["sentence"])
76
+ batch["sentence"] = re.sub('’|‘','\'',batch["sentence"])
77
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
78
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
79
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
80
+ return batch
81
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
82
+ # Preprocessing the datasets.
83
+ # We need to read the aduio files as arrays
84
+ def evaluate(batch):
85
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
86
+ with torch.no_grad():
87
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
88
+ pred_ids = torch.argmax(logits, dim=-1)
89
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
90
+ return batch
91
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
92
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
93
+ ```
94
+ **Test Result**: 55.07 %
95
+ ## Training
96
+ The Common Voice `train` and `validation` datasets were used for training.
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "mean",
39
+ "ctc_zero_infinity": false,
40
+ "do_stable_layer_norm": true,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_dropout": 0.0,
44
+ "feat_extract_norm": "layer",
45
+ "feat_proj_dropout": 0.0,
46
+ "final_dropout": 0.0,
47
+ "gradient_checkpointing": true,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.1,
50
+ "hidden_size": 1024,
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 4096,
53
+ "layer_norm_eps": 1e-05,
54
+ "layerdrop": 0.1,
55
+ "mask_channel_length": 10,
56
+ "mask_channel_min_space": 1,
57
+ "mask_channel_other": 0.0,
58
+ "mask_channel_prob": 0.0,
59
+ "mask_channel_selection": "static",
60
+ "mask_feature_length": 10,
61
+ "mask_feature_prob": 0.0,
62
+ "mask_time_length": 10,
63
+ "mask_time_min_space": 1,
64
+ "mask_time_other": 0.0,
65
+ "mask_time_prob": 0.05,
66
+ "mask_time_selection": "static",
67
+ "model_type": "wav2vec2",
68
+ "num_attention_heads": 16,
69
+ "num_conv_pos_embedding_groups": 16,
70
+ "num_conv_pos_embeddings": 128,
71
+ "num_feat_extract_layers": 7,
72
+ "num_hidden_layers": 24,
73
+ "pad_token_id": 64,
74
+ "transformers_version": "4.4.0",
75
+ "vocab_size": 65
76
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5ddd5eceb0130b831e8311aaf078a1fc117ccd2f2ad3a9484ecd83d88677d9d
3
+ size 1262200343
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "s"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66a33ee1941159861a963e66dcefea9a4964f9c3b896d89f17124cdbfc4077db
3
+ size 2351
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ଁ": 0, "ଉ": 1, "ଏ": 2, "ୋ": 3, "ଟ": 4, "ଥ": 5, "ଷ": 6, "ବ": 7, "ଇ": 8, "ନ": 9, "ଅ": 10, "ଭ": 11, "ା": 12, "ର": 13, "ଜ": 14, "ଧ": 15, "ୂ": 16, "ଦ": 17, "ଵ": 18, "ଙ": 19, "ଲ": 20, "’": 21, "ୁ": 22, "ଊ": 23, "ଗ": 25, "ଫ": 26, "ଓ": 27, "ଝ": 28, "୍": 29, "'": 30, "ଈ": 31, "ପ": 32, "|": 33, "ି": 34, "ୃ": 35, "କ": 36, "ଞ": 37, "ଣ": 38, "ସ": 39, "ୟ": 40, "଼": 41, "ୀ": 42, "ୌ": 43, "ଖ": 44, "ଃ": 45, "ଶ": 46, "ମ": 47, "ଂ": 48, "ଳ": 49, "ୈ": 50, "ଠ": 51, "ଆ": 52, "ତ": 53, "ଢ": 54, "ଯ": 55, "ହ": 56, "ଡ": 57, "ଛ": 58, "େ": 59, "ଚ": 60, "ୱ": 61, "ଘ": 62, "s": 24, "[UNK]": 63, "[PAD]": 64}