infinitejoy commited on
Commit
b20b68a
1 Parent(s): 26682d6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -0
README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ur
4
+ license: apache-2.0
5
+ tags:
6
+ - automatic-speech-recognition
7
+ - mozilla-foundation/common_voice_7_0
8
+ - generated_from_trainer
9
+ - ur
10
+ - robust-speech-event
11
+ - model_for_talk
12
+ datasets:
13
+ - mozilla-foundation/common_voice_7_0
14
+ model-index:
15
+ - name: XLS-R-300M - Urdu
16
+ results:
17
+ - task:
18
+ name: Automatic Speech Recognition
19
+ type: automatic-speech-recognition
20
+ dataset:
21
+ name: Common Voice 7
22
+ type: mozilla-foundation/common_voice_7_0
23
+ args: ur
24
+ metrics:
25
+ - name: Test WER
26
+ type: wer
27
+ value: 105.66
28
+ - name: Test CER
29
+ type: cer
30
+ value: 434.011
31
+ ---
32
+
33
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
34
+ should probably proofread and complete it, then remove this comment. -->
35
+
36
+ infinitejoy/wav2vec2-large-xls-r-300m-urdu
37
+
38
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - -UR dataset.
39
+ It achieves the following results on the evaluation set:
40
+ - Loss: NA
41
+ - Wer: NA
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 7.5e-05
61
+ - train_batch_size: 8
62
+ - eval_batch_size: 8
63
+ - seed: 42
64
+ - gradient_accumulation_steps: 4
65
+ - total_train_batch_size: 32
66
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
67
+ - lr_scheduler_type: linear
68
+ - lr_scheduler_warmup_steps: 2000
69
+ - num_epochs: 50.0
70
+ - mixed_precision_training: Native AMP
71
+
72
+ ### Training results
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.16.0.dev0
78
+ - Pytorch 1.10.0+cu102
79
+ - Datasets 1.17.1.dev0
80
+ - Tokenizers 0.10.3
81
+
82
+ #### Evaluation Commands
83
+
84
+ 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`
85
+
86
+ ```bash
87
+ python eval.py \
88
+ --model_id infinitejoy/wav2vec2-large-xls-r-300m-urdu --dataset speech-recognition-community-v2/dev_data \
89
+ --config ur --split validation --chunk_length_s 10 --stride_length_s 1
90
+ ```
91
+
92
+ ### Inference
93
+
94
+ ```python
95
+ import torch
96
+ from datasets import load_dataset
97
+ from transformers import AutoModelForCTC, AutoProcessor
98
+ import torchaudio.functional as F
99
+
100
+
101
+ model_id = "infinitejoy/wav2vec2-large-xls-r-300m-urdu"
102
+
103
+ sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "ur", split="test", streaming=True, use_auth_token=True))
104
+
105
+ sample = next(sample_iter)
106
+ resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
107
+
108
+ model = AutoModelForCTC.from_pretrained(model_id)
109
+ processor = AutoProcessor.from_pretrained(model_id)
110
+
111
+ input_values = processor(resampled_audio, return_tensors="pt").input_values
112
+
113
+ with torch.no_grad():
114
+ logits = model(input_values).logits
115
+
116
+ transcription = processor.batch_decode(logits.numpy()).text
117
+ ```
118
+
119
+ ### Eval results on Common Voice 7 "test" (WER):
120
+