KingNish commited on
Commit
9fa300d
·
verified ·
1 Parent(s): e7cba03

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -3
README.md CHANGED
@@ -1,3 +1,68 @@
1
- ---
2
- license: cc0-1.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc0-1.0
3
+ ---
4
+
5
+ 🚀 **AEROMamba: Efficient Audio Super-Resolution**
6
+ *AI-Generated README - Original: [GitHub](https://github.com/aeromamba-super-resolution/aeromamba) | [Demo](https://aeromamba-super-resolution.github.io/)*
7
+
8
+ ---
9
+
10
+ ## Model Overview
11
+ **Architecture**: Hybrid GAN + Mamba SSM
12
+ **Task**: 11.025 kHz → 44.1 kHz audio upsampling
13
+ **Key Improvements**:
14
+ - 14x faster inference vs AERO
15
+ - 5x less GPU memory usage
16
+ - 66.47 subjective score (vs AERO's 60.03)
17
+
18
+ **Checkpoint**: [MUSDB18-HQ Model](https://huggingface.co/KingNish/AEROMamba/blob/main/checkpoint.th)
19
+
20
+ ---
21
+
22
+ ## Quick Start
23
+ ```python
24
+ # Installation
25
+ pip install torch==1.12.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
26
+ pip install causal-conv1d==1.1.2 mamba-ssm==1.1.3
27
+
28
+ # Inference
29
+ from src.models.aeromamba import AEROMamba
30
+ import torchaudio
31
+
32
+ model = AEROMamba.load_from_checkpoint("checkpoint.th")
33
+ lr_audio, sr = torchaudio.load("low_res.wav") # 11kHz input
34
+ hr_audio = model(lr_audio) # 44.1kHz output
35
+ ```
36
+
37
+ ---
38
+
39
+ ## Performance (MUSDB18)
40
+ | Metric | Low-Res | AERO | AEROMamba |
41
+ |-----------------|---------|-------|-----------|
42
+ | ViSQOL ↑ | 1.82 | 2.90 | **2.93** |
43
+ | LSD ↓ | 3.98 | 1.34 | **1.23** |
44
+ | Subjective ↑ | 38.22 | 60.03 | **66.47** |
45
+
46
+ **Hardware**: 14x faster on RTX 3090 (0.087s vs 1.246s)
47
+
48
+ ---
49
+
50
+ ## Training Data
51
+ **MUSDB18-HQ**:
52
+ - 150 full-track music recordings
53
+ - 44.1 kHz originals → 11.025 kHz downsampled pairs
54
+ - 87.5/12.5 train-val split
55
+
56
+ ---
57
+
58
+ ## Citation
59
+ ```bibtex
60
+ @inproceedings{Abreu2024lamir,
61
+ author = {Wallace Abreu and Luiz Wagner Pereira Biscainho},
62
+ title = {AEROMamba: Efficient Audio SR with GANs and SSMs},
63
+ booktitle = {Proc. Latin American Music IR Workshop},
64
+ year = {2024}
65
+ }
66
+ ```
67
+
68
+ *This README was AI-generated based on original project materials. For training code and OLA inference scripts, visit the [GitHub repo](https://github.com/aeromamba-super-resolution/aeromamba).*