|
import os |
|
|
|
from trainer import Trainer, TrainerArgs |
|
|
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig,BaseAudioConfig,CharactersConfig |
|
from TTS.tts.configs.vits_config import VitsConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.models.vits import Vits, VitsAudioConfig |
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__)) |
|
RESTORE_PATH = '/home/azureuser/BanglaTTS/nctb-vits-single-female-1/checkpoint.pth' |
|
SPEAKER_ID = 9 |
|
SPEAKER_GENDER = 'male' |
|
meta_file = f"/home/azureuser/BanglaTTS/nctb-audiobook-no-numbers/{SPEAKER_GENDER}/SP_{SPEAKER_ID}/metadata.txt" |
|
root_path = f"/home/azureuser/BanglaTTS/nctb-audiobook-no-numbers/{SPEAKER_GENDER}/SP_{SPEAKER_ID}" |
|
|
|
def formatter(root_path, meta_file, **kwargs): |
|
"""Normalizes the LJSpeech meta data file to TTS format |
|
https://keithito.com/LJ-Speech-Dataset/""" |
|
txt_file = meta_file |
|
items = [] |
|
speaker_name = f"nctb_{SPEAKER_GENDER}_{SPEAKER_ID}" |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("|") |
|
wav_file = os.path.join(root_path,'audio', cols[0]) |
|
try: |
|
text = cols[1] |
|
except: |
|
print("not found") |
|
|
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) |
|
return items |
|
|
|
|
|
dataset_config = BaseDatasetConfig( |
|
meta_file_train=meta_file, path=os.path.join(root_path, "") |
|
) |
|
|
|
characters_config = CharactersConfig( |
|
pad = '<PAD>', |
|
eos = '<EOS>', |
|
bos = '<BOS>', |
|
blank = '<BLNK>', |
|
phonemes = None, |
|
characters = "abcdefghijklmnopqrstuvwxyz0123456789+=/*√তট৫ভিঐঋখঊড়ইজমএেঘঙসীঢ়হঞ‘ঈকণ৬ঁৗশঢঠ\u200c১্২৮দৃঔগও—ছউংবৈঝাযফ\u200dচরষঅৌৎথড়৪ধ০ুূ৩আঃপয়’'”^নলো_…ৰ", |
|
|
|
punctuations = "-–:;!,|.?॥। “", |
|
) |
|
|
|
|
|
|
|
|
|
audio_config = VitsAudioConfig( |
|
sample_rate=16000, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None |
|
) |
|
|
|
|
|
|
|
config = VitsConfig( |
|
audio=audio_config, |
|
run_name="vits-ft-nctb", |
|
batch_size=48, |
|
eval_batch_size=8, |
|
batch_group_size=5, |
|
num_loader_workers=8, |
|
num_eval_loader_workers=4, |
|
run_eval=True, |
|
test_delay_epochs=-1, |
|
epochs=35, |
|
|
|
text_cleaner='multilingual_cleaners', |
|
use_phonemes=False, |
|
|
|
|
|
|
|
compute_input_seq_cache=True, |
|
add_blank=True, |
|
use_language_weighted_sampler = True, |
|
print_step=500, |
|
print_eval=False, |
|
mixed_precision=True, |
|
output_path=output_path, |
|
datasets=[dataset_config], |
|
characters = characters_config, |
|
save_step=1000, |
|
cudnn_benchmark=True, |
|
|
|
test_sentences = [ |
|
["আমরা বাংলায় ওয়েব ডেভেলপমেন্ট নিয়ে কাজ করতে গিয়ে প্রথম যে সমস্যাটার মুখোমুখি হই, সেটা হলো, বাংলা ডেমো টেক্সট"], |
|
["আমি বাঙালি ভাষায় কথা বলতে পারি।"], |
|
["আমরা প্রকৃতি কে ভালোবাসি।"], |
|
["আপনি কেমন আছেন?"], |
|
] |
|
) |
|
|
|
|
|
|
|
|
|
ap = AudioProcessor.init_from_config(config) |
|
|
|
|
|
|
|
|
|
tokenizer, config = TTSTokenizer.init_from_config(config) |
|
|
|
|
|
|
|
|
|
|
|
|
|
train_samples, eval_samples = load_tts_samples( |
|
dataset_config, |
|
formatter=formatter, |
|
eval_split=True, |
|
eval_split_max_size=config.eval_split_max_size, |
|
eval_split_size=config.eval_split_size, |
|
) |
|
|
|
|
|
model = Vits(config, ap, tokenizer, speaker_manager=None) |
|
|
|
|
|
trainer = Trainer( |
|
TrainerArgs(restore_path = RESTORE_PATH), |
|
config, |
|
output_path, |
|
model=model, |
|
train_samples=train_samples, |
|
eval_samples=eval_samples, |
|
) |
|
trainer.fit() |