--- license: mit base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: NHS-pubmedbert-binary results: [] --- # NHS-pubmedbert-binary This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5861 - Accuracy: 0.8246 - Precision: 0.8180 - Recall: 0.8240 - F1: 0.8202 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0592 | 1.0 | 397 | 0.3980 | 0.8246 | 0.8179 | 0.8220 | 0.8196 | | 0.0542 | 2.0 | 794 | 0.4714 | 0.7943 | 0.7960 | 0.8064 | 0.7929 | | 0.6307 | 3.0 | 1191 | 0.5861 | 0.8246 | 0.8180 | 0.8240 | 0.8202 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2