unsubscribe
commited on
Commit
·
86edf4c
1
Parent(s):
5bb97d2
Fix error and update benchmark in README
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ pipeline_tag: text-generation
|
|
12 |
Before proceeding with the inference of `internlm-chat-20b-4bit`, please ensure that lmdeploy is installed.
|
13 |
|
14 |
```shell
|
15 |
-
pip install 'lmdeploy>=0.0.
|
16 |
```
|
17 |
|
18 |
## Inference
|
@@ -31,7 +31,7 @@ As demonstrated in the command below, first convert the model's layout using `tu
|
|
31 |
# Convert the model's layout and store it in the default path, ./workspace.
|
32 |
python3 -m lmdeploy.serve.turbomind.deploy \
|
33 |
--model-name internlm-chat-20b \
|
34 |
-
--model-path ./internlm-chat-20b \
|
35 |
--model-format awq \
|
36 |
--group-size 128
|
37 |
|
@@ -44,7 +44,7 @@ python3 -m lmdeploy.turbomind.chat ./workspace
|
|
44 |
If you wish to interact with the model via web UI, please initiate the gradio server as indicated below:
|
45 |
|
46 |
```shell
|
47 |
-
python3 -m lmdeploy.serve.
|
48 |
```
|
49 |
|
50 |
Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model.
|
@@ -65,12 +65,10 @@ We conducted benchmarks on `internlm-chat-20b-4bit`. And `token_throughput` was
|
|
65 |
**Note**: The `session_len` in `workspace/triton_models/weights/config.ini` is changed to `2056` in our test.
|
66 |
|
67 |
|
68 |
-
| batch | tensor parallel | prompt_tokens | completion_tokens | thr_per_proc(token/s) |
|
69 |
-
|
70 |
-
| 1 | 1 | 256 | 512 |
|
71 |
-
| 16 | 1 | 256 | 512 |
|
72 |
-
|
73 |
-
|
74 |
|
75 |
### token throughput
|
76 |
|
@@ -84,6 +82,24 @@ python benchmark/profile_generation.py \
|
|
84 |
```
|
85 |
You will find the `token_throughput` metrics in `./token_throughput.csv`
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
### request throughput
|
89 |
|
|
|
12 |
Before proceeding with the inference of `internlm-chat-20b-4bit`, please ensure that lmdeploy is installed.
|
13 |
|
14 |
```shell
|
15 |
+
pip install 'lmdeploy>=0.0.11'
|
16 |
```
|
17 |
|
18 |
## Inference
|
|
|
31 |
# Convert the model's layout and store it in the default path, ./workspace.
|
32 |
python3 -m lmdeploy.serve.turbomind.deploy \
|
33 |
--model-name internlm-chat-20b \
|
34 |
+
--model-path ./internlm-chat-20b-4bit \
|
35 |
--model-format awq \
|
36 |
--group-size 128
|
37 |
|
|
|
44 |
If you wish to interact with the model via web UI, please initiate the gradio server as indicated below:
|
45 |
|
46 |
```shell
|
47 |
+
python3 -m lmdeploy.serve.gradio.app ./workspace --server_name {ip_addr} --server_port {port}
|
48 |
```
|
49 |
|
50 |
Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model.
|
|
|
65 |
**Note**: The `session_len` in `workspace/triton_models/weights/config.ini` is changed to `2056` in our test.
|
66 |
|
67 |
|
68 |
+
| batch | tensor parallel | prompt_tokens | completion_tokens | thr_per_proc(token/s) | rpm (req/min) | mem_per_proc(GB) |
|
69 |
+
|-------|-----------------|---------------|-------------------|-----------------------|---------------|------------------|
|
70 |
+
| 1 | 1 | 256 | 512 | 88.77 | - | 15.65 |
|
71 |
+
| 16 | 1 | 256 | 512 | 792.7 | 220.23 | 51.46 |
|
|
|
|
|
72 |
|
73 |
### token throughput
|
74 |
|
|
|
82 |
```
|
83 |
You will find the `token_throughput` metrics in `./token_throughput.csv`
|
84 |
|
85 |
+
| batch | prompt_tokens | completion_tokens | thr_per_proc(token/s) | thr_per_node(token/s) | rpm(req/min) | mem_per_proc(GB) | mem_per_gpu(GB) | mem_per_node(GB) |
|
86 |
+
|-------|---------------|-------------------|-----------------------|-----------------------|--------------|------------------|-----------------|------------------|
|
87 |
+
| 1 | 256 | 512 | 88.77 | 710.12 | - | 15.65 | 15.65 | 125.21 |
|
88 |
+
| 1 | 512 | 512 | 83.89 | 671.15 | - | 15.68 | 15.68 | 125.46 |
|
89 |
+
| 1 | 512 | 1024 | 80.19 | 641.5 | - | 15.68 | 15.68 | 125.46 |
|
90 |
+
| 1 | 1024 | 1024 | 72.34 | 578.74 | - | 15.75 | 15.75 | 125.96 |
|
91 |
+
| 1 | 1 | 2048 | 80.69 | 645.55 | - | 15.62 | 15.62 | 124.96 |
|
92 |
+
| 8 | 256 | 512 | 565.21 | 4521.67 | - | 32.37 | 32.37 | 258.96 |
|
93 |
+
| 8 | 512 | 512 | 489.04 | 3912.33 | - | 32.62 | 32.62 | 260.96 |
|
94 |
+
| 8 | 512 | 1024 | 467.23 | 3737.84 | - | 32.62 | 32.62 | 260.96 |
|
95 |
+
| 8 | 1024 | 1024 | 383.4 | 3067.19 | - | 33.06 | 33.06 | 264.46 |
|
96 |
+
| 8 | 1 | 2048 | 487.74 | 3901.93 | - | 32.12 | 32.12 | 256.96 |
|
97 |
+
| 16 | 256 | 512 | 792.7 | 6341.6 | - | 51.46 | 51.46 | 411.71 |
|
98 |
+
| 16 | 512 | 512 | 639.4 | 5115.17 | - | 51.93 | 51.93 | 415.46 |
|
99 |
+
| 16 | 512 | 1024 | 591.39 | 4731.09 | - | 51.93 | 51.93 | 415.46 |
|
100 |
+
| 16 | 1024 | 1024 | 449.11 | 3592.85 | - | 52.06 | 52.06 | 416.46 |
|
101 |
+
| 16 | 1 | 2048 | 620.5 | 4964.02 | - | 51 | 51 | 407.96 |
|
102 |
+
|
103 |
|
104 |
### request throughput
|
105 |
|