WIP: add readme of internlm2-chat-20b-4bits model
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
---
|
5 |
+
<div align="center">
|
6 |
+
<img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
|
7 |
+
</div>
|
8 |
+
|
9 |
+
[LMDeploy](https://github.com/InternLM/lmdeploy) supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80, such as A10, A100, Geforce 30/40 series.
|
10 |
+
|
11 |
+
Before proceeding with the inference of `internlm2-chat-20b-4bits`, please ensure that lmdeploy is installed.
|
12 |
+
|
13 |
+
```shell
|
14 |
+
pip install 'lmdeploy>=0.0.11'
|
15 |
+
```
|
16 |
+
|
17 |
+
## Inference
|
18 |
+
|
19 |
+
Please download `internlm2-chat-20b-4bits` model as follows,
|
20 |
+
|
21 |
+
```shell
|
22 |
+
git-lfs install
|
23 |
+
git clone https://huggingface.co/internlm/internlm2-chat-20b-4bits
|
24 |
+
```
|
25 |
+
|
26 |
+
As demonstrated in the command below, you can interact with the AI assistant in the terminal
|
27 |
+
|
28 |
+
```shell
|
29 |
+
lmdeploy chat turbomind \
|
30 |
+
--model-path ./internlm2-chat-20b-4bits \
|
31 |
+
--model-name internlm2-chat-20b \
|
32 |
+
--model-format awq \
|
33 |
+
--group-size 128
|
34 |
+
```
|
35 |
+
|
36 |
+
## Serve with gradio
|
37 |
+
|
38 |
+
If you wish to interact with the model via web UI, please initiate the gradio server as indicated below:
|
39 |
+
|
40 |
+
```shell
|
41 |
+
python3 -m lmdeploy.serve.gradio.app ./workspace --server_name {ip_addr} --server_port {port}
|
42 |
+
```
|
43 |
+
|
44 |
+
Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model.
|
45 |
+
|
46 |
+
Besides serving with gradio, there are two more serving methods. One is serving with Triton Inference Server (TIS), and the other is an OpenAI-like server named as `api_server`.
|
47 |
+
|
48 |
+
Please refer to the [user guide](https://github.com/InternLM/lmdeploy#quick-start) for detailed information if you are interested.
|
49 |
+
|
50 |
+
|
51 |
+
## Inference Performance
|
52 |
+
|
53 |
+
LMDeploy provides scripts for benchmarking `token throughput` and `request throughput`.
|
54 |
+
|
55 |
+
`token throughput` tests the speed of generating new tokens, given a specified number of prompt tokens and completion tokens, while `request throughput` measures the number of requests processed per minute with real dialogue data.
|
56 |
+
|
57 |
+
We conducted benchmarks on `internlm2-chat-20b-4bits`. And `token_throughput` was measured by setting 256 prompt tokens and generating 512 tokens in response on A100-80G.
|
58 |
+
|
59 |
+
**Note**: The `session_len` in `workspace/triton_models/weights/config.ini` is changed to `2056` in our test.
|
60 |
+
|
61 |
+
|
62 |
+
| batch | tensor parallel | prompt_tokens | completion_tokens | thr_per_proc(token/s) | rpm (req/min) | mem_per_proc(GB) |
|
63 |
+
|-------|-----------------|---------------|-------------------|-----------------------|---------------|------------------|
|
64 |
+
| 1 | 1 | 256 | 512 | 88.77 | - | 15.65 |
|
65 |
+
| 16 | 1 | 256 | 512 | 792.7 | 220.23 | 51.46 |
|
66 |
+
|
67 |
+
### token throughput
|
68 |
+
|
69 |
+
Run the following command,
|
70 |
+
|
71 |
+
```shell
|
72 |
+
python benchmark/profile_generation.py \
|
73 |
+
--model-path ./workspace \
|
74 |
+
--concurrency 1 8 16 --prompt-tokens 256 512 512 1024 --completion-tokens 512 512 1024 1024
|
75 |
+
--dst-csv ./token_throughput.csv
|
76 |
+
```
|
77 |
+
You will find the `token_throughput` metrics in `./token_throughput.csv`
|
78 |
+
|
79 |
+
| batch | prompt_tokens | completion_tokens | thr_per_proc(token/s) | thr_per_node(token/s) | rpm(req/min) | mem_per_proc(GB) | mem_per_gpu(GB) | mem_per_node(GB) |
|
80 |
+
|-------|---------------|-------------------|-----------------------|-----------------------|--------------|------------------|-----------------|------------------|
|
81 |
+
| 1 | 256 | 512 | 88.77 | 710.12 | - | 15.65 | 15.65 | 125.21 |
|
82 |
+
| 1 | 512 | 512 | 83.89 | 671.15 | - | 15.68 | 15.68 | 125.46 |
|
83 |
+
| 1 | 512 | 1024 | 80.19 | 641.5 | - | 15.68 | 15.68 | 125.46 |
|
84 |
+
| 1 | 1024 | 1024 | 72.34 | 578.74 | - | 15.75 | 15.75 | 125.96 |
|
85 |
+
| 1 | 1 | 2048 | 80.69 | 645.55 | - | 15.62 | 15.62 | 124.96 |
|
86 |
+
| 8 | 256 | 512 | 565.21 | 4521.67 | - | 32.37 | 32.37 | 258.96 |
|
87 |
+
| 8 | 512 | 512 | 489.04 | 3912.33 | - | 32.62 | 32.62 | 260.96 |
|
88 |
+
| 8 | 512 | 1024 | 467.23 | 3737.84 | - | 32.62 | 32.62 | 260.96 |
|
89 |
+
| 8 | 1024 | 1024 | 383.4 | 3067.19 | - | 33.06 | 33.06 | 264.46 |
|
90 |
+
| 8 | 1 | 2048 | 487.74 | 3901.93 | - | 32.12 | 32.12 | 256.96 |
|
91 |
+
| 16 | 256 | 512 | 792.7 | 6341.6 | - | 51.46 | 51.46 | 411.71 |
|
92 |
+
| 16 | 512 | 512 | 639.4 | 5115.17 | - | 51.93 | 51.93 | 415.46 |
|
93 |
+
| 16 | 512 | 1024 | 591.39 | 4731.09 | - | 51.93 | 51.93 | 415.46 |
|
94 |
+
| 16 | 1024 | 1024 | 449.11 | 3592.85 | - | 52.06 | 52.06 | 416.46 |
|
95 |
+
| 16 | 1 | 2048 | 620.5 | 4964.02 | - | 51 | 51 | 407.96 |
|
96 |
+
|
97 |
+
|
98 |
+
### request throughput
|
99 |
+
|
100 |
+
LMDeploy uses ShareGPT dataset to test request throughput. Try the next commands, and you will get the `rpm` (request per minute) metric.
|
101 |
+
|
102 |
+
```
|
103 |
+
# download the ShareGPT dataset
|
104 |
+
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
105 |
+
#
|
106 |
+
python profile_throughput.py \
|
107 |
+
ShareGPT_V3_unfiltered_cleaned_split.json \
|
108 |
+
./workspace \
|
109 |
+
--concurrency 16
|
110 |
+
```
|