WIP: fix readme
Browse files
README.md
CHANGED
@@ -1,110 +1,60 @@
|
|
1 |
-
|
2 |
-
license: apache-2.0
|
3 |
-
pipeline_tag: text-generation
|
4 |
-
---
|
5 |
-
<div align="center">
|
6 |
-
<img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
|
7 |
-
</div>
|
8 |
|
9 |
-
[
|
10 |
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
pip install lmdeploy
|
15 |
-
```
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
git-lfs install
|
23 |
-
git clone https://huggingface.co/internlm/internlm2-chat-7b-4bits
|
24 |
-
```
|
25 |
-
|
26 |
-
As demonstrated in the command below, you can interact with the AI assistant in the terminal
|
27 |
|
28 |
```shell
|
29 |
-
|
30 |
-
--model-path ./internlm2-chat-7b-4bits \
|
31 |
-
--model-name internlm2-chat-7b \
|
32 |
-
--model-format awq \
|
33 |
-
--group-size 128
|
34 |
```
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
If you wish to interact with the model via web UI, please initiate the gradio server as indicated below:
|
39 |
|
40 |
-
|
41 |
-
python3 -m lmdeploy.serve.gradio.app ./workspace --server_name {ip_addr} --server_port {port}
|
42 |
-
```
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
Please refer to the [user guide](https://github.com/InternLM/lmdeploy#quick-start) for detailed information if you are interested.
|
49 |
|
|
|
|
|
50 |
|
51 |
-
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
58 |
|
59 |
-
|
60 |
|
|
|
61 |
|
62 |
-
|
63 |
-
|-------|-----------------|---------------|-------------------|-----------------------|---------------|------------------|
|
64 |
-
| 1 | 1 | 256 | 512 | 88.77 | - | 15.65 |
|
65 |
-
| 16 | 1 | 256 | 512 | 792.7 | 220.23 | 51.46 |
|
66 |
|
67 |
-
|
|
|
|
|
68 |
|
69 |
-
|
70 |
|
71 |
```shell
|
72 |
-
|
73 |
-
--model-path ./workspace \
|
74 |
-
--concurrency 1 8 16 --prompt-tokens 256 512 512 1024 --completion-tokens 512 512 1024 1024
|
75 |
-
--dst-csv ./token_throughput.csv
|
76 |
```
|
77 |
-
You will find the `token_throughput` metrics in `./token_throughput.csv`
|
78 |
-
|
79 |
-
| batch | prompt_tokens | completion_tokens | thr_per_proc(token/s) | thr_per_node(token/s) | rpm(req/min) | mem_per_proc(GB) | mem_per_gpu(GB) | mem_per_node(GB) |
|
80 |
-
|-------|---------------|-------------------|-----------------------|-----------------------|--------------|------------------|-----------------|------------------|
|
81 |
-
| 1 | 256 | 512 | 88.77 | 710.12 | - | 15.65 | 15.65 | 125.21 |
|
82 |
-
| 1 | 512 | 512 | 83.89 | 671.15 | - | 15.68 | 15.68 | 125.46 |
|
83 |
-
| 1 | 512 | 1024 | 80.19 | 641.5 | - | 15.68 | 15.68 | 125.46 |
|
84 |
-
| 1 | 1024 | 1024 | 72.34 | 578.74 | - | 15.75 | 15.75 | 125.96 |
|
85 |
-
| 1 | 1 | 2048 | 80.69 | 645.55 | - | 15.62 | 15.62 | 124.96 |
|
86 |
-
| 8 | 256 | 512 | 565.21 | 4521.67 | - | 32.37 | 32.37 | 258.96 |
|
87 |
-
| 8 | 512 | 512 | 489.04 | 3912.33 | - | 32.62 | 32.62 | 260.96 |
|
88 |
-
| 8 | 512 | 1024 | 467.23 | 3737.84 | - | 32.62 | 32.62 | 260.96 |
|
89 |
-
| 8 | 1024 | 1024 | 383.4 | 3067.19 | - | 33.06 | 33.06 | 264.46 |
|
90 |
-
| 8 | 1 | 2048 | 487.74 | 3901.93 | - | 32.12 | 32.12 | 256.96 |
|
91 |
-
| 16 | 256 | 512 | 792.7 | 6341.6 | - | 51.46 | 51.46 | 411.71 |
|
92 |
-
| 16 | 512 | 512 | 639.4 | 5115.17 | - | 51.93 | 51.93 | 415.46 |
|
93 |
-
| 16 | 512 | 1024 | 591.39 | 4731.09 | - | 51.93 | 51.93 | 415.46 |
|
94 |
-
| 16 | 1024 | 1024 | 449.11 | 3592.85 | - | 52.06 | 52.06 | 416.46 |
|
95 |
-
| 16 | 1 | 2048 | 620.5 | 4964.02 | - | 51 | 51 | 407.96 |
|
96 |
-
|
97 |
-
|
98 |
-
### request throughput
|
99 |
-
|
100 |
-
LMDeploy uses ShareGPT dataset to test request throughput. Try the next commands, and you will get the `rpm` (request per minute) metric.
|
101 |
|
102 |
-
|
103 |
-
# download the ShareGPT dataset
|
104 |
-
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
105 |
-
#
|
106 |
-
python profile_throughput.py \
|
107 |
-
ShareGPT_V3_unfiltered_cleaned_split.json \
|
108 |
-
./workspace \
|
109 |
-
--concurrency 16
|
110 |
-
```
|
|
|
1 |
+
# INT4 Weight-only Quantization and Deployment (W4A16)
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
LMDeploy adopts [AWQ](https://arxiv.org/abs/2306.00978) algorithm for 4bit weight-only quantization. By developed the high-performance cuda kernel, the 4bit quantized model inference achieves up to 2.4x faster than FP16.
|
4 |
|
5 |
+
LMDeploy supports the following NVIDIA GPU for W4A16 inference:
|
6 |
|
7 |
+
- Turing(sm75): 20 series, T4
|
|
|
|
|
8 |
|
9 |
+
- Ampere(sm80,sm86): 30 series, A10, A16, A30, A100
|
10 |
|
11 |
+
- Ada Lovelace(sm90): 40 series
|
12 |
|
13 |
+
Before proceeding with the quantization and inference, please ensure that lmdeploy is installed.
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
```shell
|
16 |
+
pip install lmdeploy[all]
|
|
|
|
|
|
|
|
|
17 |
```
|
18 |
|
19 |
+
This article comprises the following sections:
|
|
|
|
|
20 |
|
21 |
+
<!-- toc -->
|
|
|
|
|
22 |
|
23 |
+
- [Inference](#inference)
|
24 |
+
- [Evaluation](#evaluation)
|
25 |
+
- [Service](#service)
|
|
|
|
|
26 |
|
27 |
+
<!-- tocstop -->
|
28 |
+
## Inference
|
29 |
|
30 |
+
Trying the following codes, you can perform the batched offline inference with the quantized model:
|
31 |
|
32 |
+
```python
|
33 |
+
from lmdeploy import pipeline, TurbomindEngineConfig
|
34 |
+
engine_config = TurbomindEngineConfig(model_format='awq')
|
35 |
+
pipe = pipeline("internlm/internlm2-chat-7b-4bits", engine_config)
|
36 |
+
response = pipe(["Hi, pls intro yourself", "Shanghai is"])
|
37 |
+
print(response)
|
38 |
+
```
|
39 |
|
40 |
+
For more information about the pipeline parameters, please refer to [here](https://github.com/InternLM/lmdeploy/blob/main/docs/en/inference/pipeline.md).
|
41 |
|
42 |
+
## Evaluation
|
43 |
|
44 |
+
Please overview [this guide](https://opencompass.readthedocs.io/en/latest/advanced_guides/evaluation_turbomind.html) about model evaluation with LMDeploy.
|
45 |
|
46 |
+
## Service
|
47 |
|
48 |
+
LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
|
|
|
|
|
|
|
49 |
|
50 |
+
```shell
|
51 |
+
lmdeploy serve api_server internlm/internlm2-chat-7b-4bits --backend turbomind --model-format awq
|
52 |
+
```
|
53 |
|
54 |
+
The default port of `api_server` is `23333`. After the server is launched, you can communicate with server on terminal through `api_client`:
|
55 |
|
56 |
```shell
|
57 |
+
lmdeploy serve api_client http://0.0.0.0:23333
|
|
|
|
|
|
|
58 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
You can overview and try out `api_server` APIs online by swagger UI at `http://0.0.0.0:23333`, or you can also read the API specification from [here](../serving/restful_api.md).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|