Update README.md
Browse files
README.md
CHANGED
@@ -26,31 +26,37 @@ pipeline_tag: text-generation
|
|
26 |
|
27 |
## Introduction
|
28 |
|
29 |
-
|
30 |
-
- It leverages trillions of high-quality tokens for training to establish a powerful knowledge base.
|
31 |
-
- It supports an 8k context window length, enabling longer input sequences and stronger reasoning capabilities.
|
32 |
-
- It provides a versatile toolset for users to flexibly build their own workflows.
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
### Performance Evaluation
|
37 |
|
38 |
-
We conducted a comprehensive evaluation of
|
39 |
-
|
40 |
-
|
|
41 |
-
|
|
42 |
-
|
|
43 |
-
|
|
44 |
-
|
|
45 |
-
|
|
46 |
-
|
|
47 |
-
|
|
48 |
-
|
|
49 |
-
|
50 |
-
|
51 |
-
| RACE(High) | 76.3 | 57.4 | 46.9* | 28.1 | 66.3 | 40.7 | 54.0 |
|
52 |
-
|
53 |
-
- The evaluation results were obtained from [OpenCompass 20230706](https://github.com/internLM/OpenCompass/) (some data marked with *, which means come from the original papers), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
|
54 |
- The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
|
55 |
|
56 |
|
@@ -58,6 +64,7 @@ We conducted a comprehensive evaluation of InternLM using the open-source evalua
|
|
58 |
|
59 |
### Import from Transformers
|
60 |
To load the InternLM 7B Chat model using Transformers, use the following code:
|
|
|
61 |
```python
|
62 |
import torch
|
63 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
@@ -94,37 +101,43 @@ for response, history in model.stream_chat(tokenizer, "Hello", history=[]):
|
|
94 |
The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form (English)](https://wj.qq.com/s2/12727483/5dba/)/[申请表(中文)](https://wj.qq.com/s2/12725412/f7c1/). For other questions or collaborations, please contact <internlm@pjlab.org.cn>.
|
95 |
|
96 |
## 简介
|
97 |
-
InternLM ,即书生·浦语大模型,包含面向实用场景的70亿参数基础模型与对话模型 (InternLM-7B)。模型具有以下特点:
|
98 |
-
- 使用上万亿高质量预料,建立模型超强知识体系;
|
99 |
-
- 支持8k语境窗口长度,实现更长输入与更强推理体验;
|
100 |
-
- 通用工具调用能力,支持用户灵活自助搭建流程;
|
101 |
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
### 性能评测
|
105 |
|
106 |
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://opencompass.org.cn/rank)获取更多的评测结果。
|
107 |
|
108 |
-
|
|
109 |
-
|
|
110 |
-
|
|
111 |
-
|
|
112 |
-
|
|
113 |
-
|
|
114 |
-
|
|
115 |
-
|
|
116 |
-
|
|
117 |
-
|
118 |
-
|
119 |
-
| RACE(High) | 76.3 | 57.4 | 46.9* | 28.1 | 66.3 | 40.7 | 54.0 |
|
120 |
-
|
121 |
-
- 以上评测结果基于 [OpenCompass 20230706](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表数据来自原始论文),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
|
122 |
- 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
|
123 |
|
124 |
**局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
|
125 |
|
126 |
### 通过 Transformers 加载
|
127 |
-
|
|
|
|
|
128 |
```python
|
129 |
import torch
|
130 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
26 |
|
27 |
## Introduction
|
28 |
|
29 |
+
InternLM2 has open-sourced a 7 billion parameter base model and a chat model tailored for practical scenarios. The model has the following characteristics:
|
|
|
|
|
|
|
30 |
|
31 |
+
- **200K Context window**: Nearly perfect at finding needles in the haystack with 200K-long context, with leading performance on long-context tasks like LongBench and L-Eval. Try it with [LMDeploy](https://github.com/InternLM/lmdeploy) for 200K-context inference.
|
32 |
+
|
33 |
+
- **Outstanding comprehensive performance**: Significantly better than the last generation in all dimensions, especially in reasoning, math, code, chat experience, instruction following, and creative writing, with leading performance among open-source models in similar sizes. In some evaluations, InternLM2-Chat-20B may match or even surpass ChatGPT (GPT-3.5).
|
34 |
+
|
35 |
+
- **Code interpreter & Data analysis**: With code interpreter, InternLM2-Chat-20B obtains compatible performance with GPT-4 on GSM8K and MATH. InternLM2-Chat also provides data analysis capability.
|
36 |
+
|
37 |
+
- **Stronger tool use**: Based on better tool utilization-related capabilities in instruction following, tool selection and reflection, InternLM2 can support more kinds of agents and multi-step tool calling for complex tasks. See [examples](https://github.com/InternLM/lagent).
|
38 |
+
|
39 |
+
|
40 |
+
## InternLM2-Chat-7B-SFT
|
41 |
+
|
42 |
+
InternLM2-Chat-7B-SFT is the SFT version based on InternLM2-Base, and InternLM2-Chat-7B is further trained from InternLM2-Chat-7B-SFT by Online RLHF.
|
43 |
+
We release the SFT version so that the community can study the influence of RLHF deeply.
|
44 |
|
45 |
### Performance Evaluation
|
46 |
|
47 |
+
We conducted a comprehensive evaluation of InternLM2 using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://opencompass.org.cn/rank) for more evaluation results.
|
48 |
+
|
49 |
+
| Dataset\Models | InternLM2-7B | InternLM2-Chat-7B | InternLM2-20B | InternLM2-Chat-20B | ChatGPT | GPT-4 |
|
50 |
+
| --- | --- | --- | --- | --- | --- | --- |
|
51 |
+
| MMLU | 65.8 | 63.7 | 67.7 | 66.5 | 69.1 | 83.0 |
|
52 |
+
| AGIEval | 49.9 | 47.2 | 53.0 | 50.3 | 39.9 | 55.1 |
|
53 |
+
| BBH | 65.0 | 61.2 | 72.1 | 68.3 | 70.1 | 86.7 |
|
54 |
+
| GSM8K | 70.8 | 70.7 | 76.1 | 79.6 | 78.2 | 91.4 |
|
55 |
+
| MATH | 20.2 | 23.0 | 25.5 | 31.9 | 28.0 | 45.8 |
|
56 |
+
| HumanEval | 43.3 | 59.8 | 48.8 | 67.1 | 73.2 | 74.4 |
|
57 |
+
| MBPP(Sanitized) | 51.8 | 51.4 | 63.0 | 65.8 | 78.9 | 79.0 |
|
58 |
+
|
59 |
+
- The evaluation results were obtained from [OpenCompass](https://github.com/internLM/OpenCompass/) (some data marked with *, which means come from the original papers), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
|
|
|
|
|
|
|
60 |
- The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
|
61 |
|
62 |
|
|
|
64 |
|
65 |
### Import from Transformers
|
66 |
To load the InternLM 7B Chat model using Transformers, use the following code:
|
67 |
+
|
68 |
```python
|
69 |
import torch
|
70 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
101 |
The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form (English)](https://wj.qq.com/s2/12727483/5dba/)/[申请表(中文)](https://wj.qq.com/s2/12725412/f7c1/). For other questions or collaborations, please contact <internlm@pjlab.org.cn>.
|
102 |
|
103 |
## 简介
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
InternLM2 ,即书生·浦语大模型第二代,开源了面向实用场景的70亿参数基础模型与对话模型 (InternLM2-Chat-7B)。模型具有以下特点:
|
106 |
+
|
107 |
+
- 有效支持20万字超长上下文:模型在20万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 和 L-Eval 等长文任务中的表现也达到开源模型中的领先水平。 可以通过 [LMDeploy](./inference/) 尝试20万字超长上下文推理。
|
108 |
+
- 综合性能全面提升:各能力维度相比上一代模型全面进步,在推理、数学、代码、对话体验、指令遵循和创意写作等方面的能力提升尤为显著,综合性能达到同量级开源模型的领先水平,在重点能力评测上 InternLM2-Chat-20B 能比肩甚至超越 ChatGPT (GPT-3.5)。
|
109 |
+
- 代码解释器与数据分析:在配合代码解释器(code-interpreter)的条件下,InternLM2-Chat-20B 在 GSM8K 和 MATH 上可以达到和 GPT-4 相仿的水平。基于在数理和工具方面强大的基础能力,InternLM2-Chat 提供了实用的数据分析能力。
|
110 |
+
- 工具调用能力整体升级:基于更强和更具有泛化性的指令理解、工具筛选与结果反思等能力,新版模型可以更可靠地支持复杂智能体的搭建,支持对工具进行有效的多轮调用,完成较复杂的任务。可以查看更多[样例](./agent/)。
|
111 |
+
|
112 |
+
|
113 |
+
## InternLM2-Chat-7B-SFT
|
114 |
+
|
115 |
+
InternLM2-Chat-7B-SFT 基于 InternLM2-Base-7B 经过有监督微调(SFT)训练而来,InternLM2-Chat-7B 在 InternLM2-Chat-7B-SFT 的基础上进一步经历了 Online RLHF。
|
116 |
+
我们开源 SFT 模型以便利社区对 RLHF 的研究。
|
117 |
|
118 |
### 性能评测
|
119 |
|
120 |
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://opencompass.org.cn/rank)获取更多的评测结果。
|
121 |
|
122 |
+
| 评测集\模型 | InternLM2-7B | InternLM2-Chat-7B | InternLM2-20B | InternLM2-Chat-20B | ChatGPT | GPT-4 |
|
123 |
+
| --- | --- | --- | --- | --- | --- | --- |
|
124 |
+
| MMLU | 65.8 | 63.7 | 67.7 | 66.5 | 69.1 | 83.0 |
|
125 |
+
| AGIEval | 49.9 | 47.2 | 53.0 | 50.3 | 39.9 | 55.1 |
|
126 |
+
| BBH | 65.0 | 61.2 | 72.1 | 68.3 | 70.1 | 86.7 |
|
127 |
+
| GSM8K | 70.8 | 70.7 | 76.1 | 79.6 | 78.2 | 91.4 |
|
128 |
+
| MATH | 20.2 | 23.0 | 25.5 | 31.9 | 28.0 | 45.8 |
|
129 |
+
| HumanEval | 43.3 | 59.8 | 48.8 | 67.1 | 73.2 | 74.4 |
|
130 |
+
| MBPP(Sanitized) | 51.8 | 51.4 | 63.0 | 65.8 | 78.9 | 79.0 |
|
131 |
+
|
132 |
+
- 以上评测结果基于 [OpenCompass](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表数据来自原始论文),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
|
|
|
|
|
|
|
133 |
- 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
|
134 |
|
135 |
**局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
|
136 |
|
137 |
### 通过 Transformers 加载
|
138 |
+
|
139 |
+
通过以下的代码加载 InternLM2 7B Chat SFT 模型
|
140 |
+
|
141 |
```python
|
142 |
import torch
|
143 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|