x54-729 commited on
Commit
b0460b5
·
verified ·
1 Parent(s): ee2a77d

Update modeling_internlm2.py

Browse files
Files changed (1) hide show
  1. modeling_internlm2.py +731 -370
modeling_internlm2.py CHANGED
@@ -13,11 +13,10 @@
13
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
  # See the License for the specific language governing permissions and
15
  # limitations under the License.
16
- """ PyTorch InternLM2 model."""
17
  import math
18
  import queue
19
  import threading
20
- import warnings
21
  from typing import List, Optional, Tuple, Union
22
 
23
  import torch
@@ -27,15 +26,21 @@ from einops import rearrange
27
  from torch import nn
28
  from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
  from transformers.activations import ACT2FN
 
 
30
  from transformers.modeling_outputs import (
31
  BaseModelOutputWithPast,
32
  CausalLMOutputWithPast,
 
33
  SequenceClassifierOutputWithPast,
 
34
  )
35
  from transformers.modeling_utils import PreTrainedModel
 
36
  from transformers.utils import (
37
  add_start_docstrings,
38
  add_start_docstrings_to_model_forward,
 
39
  logging,
40
  replace_return_docstrings,
41
  )
@@ -47,36 +52,24 @@ except Exception:
47
 
48
  from .configuration_internlm2 import InternLM2Config
49
 
50
- logger = logging.get_logger(__name__)
51
-
52
- _CONFIG_FOR_DOC = "InternLM2Config"
53
 
54
- flash_attn_func, flash_attn_varlen_func = None, None
55
- pad_input, index_first_axis, unpad_input = None, None, None
 
 
 
56
 
57
 
58
- def _import_flash_attn():
59
- global flash_attn_func, flash_attn_varlen_func
60
- global pad_input, index_first_axis, unpad_input
61
- try:
62
- from flash_attn import flash_attn_func as _flash_attn_func
63
- from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
64
- from flash_attn.bert_padding import index_first_axis as _index_first_axis
65
- from flash_attn.bert_padding import pad_input as _pad_input
66
- from flash_attn.bert_padding import unpad_input as _unpad_input
67
 
68
- flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
69
- pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
70
- except ImportError:
71
- raise ImportError("flash_attn is not installed.")
72
 
73
 
74
- # Copied from transformers.models.llama.modeling_llama._get_unpad_data
75
  def _get_unpad_data(attention_mask):
76
  seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
77
  indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
78
  max_seqlen_in_batch = seqlens_in_batch.max().item()
79
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
80
  return (
81
  indices,
82
  cu_seqlens,
@@ -84,49 +77,10 @@ def _get_unpad_data(attention_mask):
84
  )
85
 
86
 
87
- # Copied from transformers.models.bart.modeling_bart._make_causal_mask
88
- def _make_causal_mask(
89
- input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
90
- ):
91
- """
92
- Make causal mask used for bi-directional self-attention.
93
- """
94
- bsz, tgt_len = input_ids_shape
95
- mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
96
- mask_cond = torch.arange(mask.size(-1), device=device)
97
- mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
98
- mask = mask.to(dtype)
99
-
100
- if past_key_values_length > 0:
101
- mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
102
- return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
103
-
104
-
105
- # Copied from transformers.models.bart.modeling_bart._expand_mask
106
- def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
107
- """
108
- Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
109
- """
110
- bsz, src_len = mask.size()
111
- tgt_len = tgt_len if tgt_len is not None else src_len
112
-
113
- expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
114
-
115
- inverted_mask = 1.0 - expanded_mask
116
-
117
- return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
118
-
119
-
120
- # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
121
  class InternLM2RMSNorm(nn.Module):
122
- """
123
- InternLM2 RMSNorm implemention.
124
- """
125
 
126
  def __init__(self, hidden_size, eps=1e-6):
127
- """
128
- InternLM2RMSNorm is equivalent to T5LayerNorm
129
- """
130
  super().__init__()
131
  self.weight = nn.Parameter(torch.ones(hidden_size))
132
  self.variance_epsilon = eps
@@ -139,97 +93,68 @@ class InternLM2RMSNorm(nn.Module):
139
  return self.weight * hidden_states.to(input_dtype)
140
 
141
 
142
- # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
 
 
143
  class InternLM2RotaryEmbedding(nn.Module):
144
- """
145
- Normal InternLM2 rotary embedding.
146
- """
147
 
148
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
  super().__init__()
150
-
151
  self.dim = dim
152
  self.max_position_embeddings = max_position_embeddings
153
  self.base = base
154
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
  self.register_buffer("inv_freq", inv_freq, persistent=False)
 
 
156
 
157
- # Build here to make `torch.jit.trace` work.
158
- self._set_cos_sin_cache(
159
- seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
- )
161
-
162
- def _set_cos_sin_cache(self, seq_len, device, dtype):
163
- self.max_seq_len_cached = seq_len
164
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
165
-
166
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
167
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
- emb = torch.cat((freqs, freqs), dim=-1)
169
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
170
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
171
-
172
- def forward(self, x, seq_len=None):
173
  # x: [bs, num_attention_heads, seq_len, head_size]
174
- if seq_len > self.max_seq_len_cached:
175
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
 
 
 
 
 
 
 
 
 
 
176
 
177
- return (
178
- self.cos_cached[:seq_len].to(dtype=x.dtype),
179
- self.sin_cached[:seq_len].to(dtype=x.dtype),
180
- )
181
 
182
-
183
- # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
  class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
  """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
 
187
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
- self.scaling_factor = scaling_factor
189
- super().__init__(dim, max_position_embeddings, base, device)
190
-
191
- def _set_cos_sin_cache(self, seq_len, device, dtype):
192
- self.max_seq_len_cached = seq_len
193
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
194
- t = t / self.scaling_factor
195
-
196
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
197
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
- emb = torch.cat((freqs, freqs), dim=-1)
199
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
200
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
201
 
202
 
203
- # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
  class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
  """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
- Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
- """
208
-
209
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
- self.scaling_factor = scaling_factor
211
- super().__init__(dim, max_position_embeddings, base, device)
212
-
213
- def _set_cos_sin_cache(self, seq_len, device, dtype):
214
- self.max_seq_len_cached = seq_len
215
 
 
 
 
216
  if seq_len > self.max_position_embeddings:
217
  base = self.base * (
218
  (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
  ) ** (self.dim / (self.dim - 2))
220
- inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
- self.register_buffer("inv_freq", inv_freq, persistent=False)
222
 
223
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
 
224
 
225
- freqs = torch.einsum("i,j->ij", t, self.inv_freq)
226
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
- emb = torch.cat((freqs, freqs), dim=-1)
228
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
229
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
230
 
231
-
232
- # Copied from transformers.model.llama.modeling_llama.rotate_half
233
  def rotate_half(x):
234
  """Rotates half the hidden dims of the input."""
235
  x1 = x[..., : x.shape[-1] // 2]
@@ -237,20 +162,35 @@ def rotate_half(x):
237
  return torch.cat((-x2, x1), dim=-1)
238
 
239
 
240
- # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
- """Applies Rotary Position Embedding to the query and key tensors."""
243
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245
  q_embed = (q * cos) + (rotate_half(q) * sin)
246
  k_embed = (k * cos) + (rotate_half(k) * sin)
247
  return q_embed, k_embed
248
 
249
 
250
  class InternLM2MLP(nn.Module):
251
- """
252
- InternLM2 FFN.
253
- """
254
 
255
  def __init__(self, config):
256
  super().__init__()
@@ -268,7 +208,6 @@ class InternLM2MLP(nn.Module):
268
  return down_proj
269
 
270
 
271
- # Copied from transformers.model.llama.modeling_llama.repeat_kv
272
  def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
273
  """
274
  This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
@@ -281,19 +220,27 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
281
  return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
282
 
283
 
284
- # Modified from transformers.model.llama.modeling_llama.LlamaAttention
285
  class InternLM2Attention(nn.Module):
286
  """Multi-headed attention from 'Attention Is All You Need' paper"""
287
 
288
- def __init__(self, config: InternLM2Config):
289
  super().__init__()
290
  self.config = config
 
 
 
 
 
 
 
 
291
  self.hidden_size = config.hidden_size
292
  self.num_heads = config.num_attention_heads
293
  self.head_dim = self.hidden_size // self.num_heads
294
  self.num_key_value_heads = config.num_key_value_heads
295
  self.num_key_value_groups = self.num_heads // self.num_key_value_heads
296
  self.max_position_embeddings = config.max_position_embeddings
 
297
  self.is_causal = True
298
 
299
  if (self.head_dim * self.num_heads) != self.hidden_size:
@@ -307,8 +254,8 @@ class InternLM2Attention(nn.Module):
307
  (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
308
  bias=config.bias,
309
  )
310
-
311
  self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
 
312
  self._init_rope()
313
 
314
  def _init_rope(self):
@@ -316,51 +263,49 @@ class InternLM2Attention(nn.Module):
316
  self.rotary_emb = InternLM2RotaryEmbedding(
317
  self.head_dim,
318
  max_position_embeddings=self.max_position_embeddings,
319
- base=self.config.rope_theta,
320
  )
321
  else:
322
  scaling_type = self.config.rope_scaling["type"]
323
  scaling_factor = self.config.rope_scaling["factor"]
324
- if scaling_type == "dynamic":
325
- self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
326
  self.head_dim,
327
  max_position_embeddings=self.max_position_embeddings,
328
- base=self.config.rope_theta,
329
  scaling_factor=scaling_factor,
 
330
  )
331
- elif scaling_type == "linear":
332
- self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
333
  self.head_dim,
334
  max_position_embeddings=self.max_position_embeddings,
335
- base=self.config.rope_theta,
336
  scaling_factor=scaling_factor,
 
337
  )
338
  else:
339
- raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
340
- return self.rotary_emb
341
-
342
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
343
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
344
 
345
  def forward(
346
  self,
347
  hidden_states: torch.Tensor,
348
  attention_mask: Optional[torch.Tensor] = None,
349
  position_ids: Optional[torch.LongTensor] = None,
350
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
351
  output_attentions: bool = False,
352
- use_cache: bool = False,
353
- **kwargs,
354
  ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
355
- if "padding_mask" in kwargs:
356
- warnings.warn(
357
- "Passing `padding_mask` is deprecated and will be removed in v4.37. "
358
- "Please make sure use `attention_mask` instead.`"
359
- )
360
-
361
  bsz, q_len, _ = hidden_states.size()
362
 
363
- qkv_states = self.wqkv(hidden_states)
 
 
 
 
 
 
 
 
364
 
365
  qkv_states = rearrange(
366
  qkv_states,
@@ -370,44 +315,26 @@ class InternLM2Attention(nn.Module):
370
  )
371
 
372
  query_states = qkv_states[..., : self.num_key_value_groups, :]
373
- query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
374
- key_states = qkv_states[..., -2, :]
375
- value_states = qkv_states[..., -1, :]
376
 
377
- query_states = query_states.transpose(1, 2)
378
- key_states = key_states.transpose(1, 2)
379
- value_states = value_states.transpose(1, 2)
380
-
381
- kv_seq_len = key_states.shape[-2]
382
- if past_key_value is not None:
383
- kv_seq_len += past_key_value[0].shape[-2]
384
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
385
  query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
386
 
387
  if past_key_value is not None:
388
- # reuse k, v, self_attention
389
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
390
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
391
-
392
- past_key_value = (key_states, value_states) if use_cache else None
393
 
394
  key_states = repeat_kv(key_states, self.num_key_value_groups)
395
  value_states = repeat_kv(value_states, self.num_key_value_groups)
396
 
397
  attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
398
 
399
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
400
- raise ValueError(
401
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
402
- f" {attn_weights.size()}"
403
- )
404
-
405
- if attention_mask is not None:
406
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
407
- raise ValueError(
408
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
409
- )
410
- attn_weights = attn_weights + attention_mask
411
 
412
  # upcast attention to fp32
413
  attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
@@ -420,9 +347,20 @@ class InternLM2Attention(nn.Module):
420
  )
421
 
422
  attn_output = attn_output.transpose(1, 2).contiguous()
 
423
  attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
424
 
425
- attn_output = self.wo(attn_output)
 
 
 
 
 
 
 
 
 
 
426
 
427
  if not output_attentions:
428
  attn_weights = None
@@ -430,7 +368,6 @@ class InternLM2Attention(nn.Module):
430
  return attn_output, attn_weights, past_key_value
431
 
432
 
433
- # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
434
  class InternLM2FlashAttention2(InternLM2Attention):
435
  """
436
  InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
@@ -438,26 +375,34 @@ class InternLM2FlashAttention2(InternLM2Attention):
438
  flash attention and deal with padding tokens in case the input contains any of them.
439
  """
440
 
 
 
 
 
 
 
 
 
 
 
 
441
  def forward(
442
  self,
443
  hidden_states: torch.Tensor,
444
  attention_mask: Optional[torch.LongTensor] = None,
445
  position_ids: Optional[torch.LongTensor] = None,
446
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
447
  output_attentions: bool = False,
448
  use_cache: bool = False,
449
- **kwargs,
450
  ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
451
- # InternLM2FlashAttention2 attention does not support output_attentions
452
- if "padding_mask" in kwargs:
453
- warnings.warn(
454
- "Passing `padding_mask` is deprecated and will be removed in v4.37. "
455
- "Please make sure use `attention_mask` instead.`"
456
  )
457
 
458
- # overwrite attention_mask with padding_mask
459
- attention_mask = kwargs.pop("padding_mask")
460
-
461
  output_attentions = False
462
 
463
  bsz, q_len, _ = hidden_states.size()
@@ -480,33 +425,61 @@ class InternLM2FlashAttention2(InternLM2Attention):
480
  key_states = key_states.transpose(1, 2)
481
  value_states = value_states.transpose(1, 2)
482
 
483
- kv_seq_len = key_states.shape[-2]
484
- if past_key_value is not None:
485
- kv_seq_len += past_key_value[0].shape[-2]
486
-
487
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
488
-
489
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
490
 
491
  if past_key_value is not None:
492
- # reuse k, v, self_attention
493
- key_states = torch.cat([past_key_value[0], key_states], dim=2)
494
- value_states = torch.cat([past_key_value[1], value_states], dim=2)
495
-
496
- past_key_value = (key_states, value_states) if use_cache else None
497
 
 
 
 
498
  query_states = query_states.transpose(1, 2)
499
  key_states = key_states.transpose(1, 2)
500
  value_states = value_states.transpose(1, 2)
501
 
502
- attn_output = self._flash_attention_forward(query_states, key_states, value_states, attention_mask, q_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
503
  attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
504
  attn_output = self.wo(attn_output)
505
 
506
  if not output_attentions:
507
  attn_weights = None
508
 
509
- return attn_output, attn_weights, past_key_value
510
 
511
  def _flash_attention_forward(
512
  self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
@@ -525,23 +498,29 @@ class InternLM2FlashAttention2(InternLM2Attention):
525
  attention_mask (`torch.Tensor`):
526
  The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
527
  position of padding tokens and 1 for the position of non-padding tokens.
528
- dropout (`int`, *optional*):
529
  Attention dropout
530
  softmax_scale (`float`, *optional*):
531
  The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
532
  """
 
 
 
 
 
 
 
533
  # Contains at least one padding token in the sequence
534
- causal = self.is_causal and query_length != 1
535
  if attention_mask is not None:
536
  batch_size = query_states.shape[0]
537
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
538
  query_states, key_states, value_states, attention_mask, query_length
539
  )
540
 
541
  cu_seqlens_q, cu_seqlens_k = cu_seq_lens
542
  max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
543
 
544
- attn_output_unpad = flash_attn_varlen_func(
545
  query_states,
546
  key_states,
547
  value_states,
@@ -554,27 +533,26 @@ class InternLM2FlashAttention2(InternLM2Attention):
554
  causal=causal,
555
  )
556
 
557
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
558
  else:
559
- attn_output = flash_attn_func(
560
  query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
561
  )
562
 
563
  return attn_output
564
 
565
- def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
566
  indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
567
  batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
568
 
569
- key_layer = index_first_axis(
570
  key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
571
  )
572
- value_layer = index_first_axis(
573
  value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
574
  )
575
-
576
  if query_length == kv_seq_len:
577
- query_layer = index_first_axis(
578
  query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
579
  )
580
  cu_seqlens_q = cu_seqlens_k
@@ -590,35 +568,139 @@ class InternLM2FlashAttention2(InternLM2Attention):
590
  else:
591
  # The -q_len: slice assumes left padding.
592
  attention_mask = attention_mask[:, -query_length:]
593
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
 
 
594
 
595
  return (
596
  query_layer,
597
  key_layer,
598
  value_layer,
599
- indices_q.to(torch.int64),
600
  (cu_seqlens_q, cu_seqlens_k),
601
  (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
602
  )
603
 
604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
605
  INTERNLM2_ATTENTION_CLASSES = {
606
  "eager": InternLM2Attention,
607
  "flash_attention_2": InternLM2FlashAttention2,
 
608
  }
609
 
610
 
611
- # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
612
  class InternLM2DecoderLayer(nn.Module):
613
- """
614
- InternLM2 decoder layer.
615
- """
616
 
617
- def __init__(self, config: InternLM2Config):
618
  super().__init__()
619
  self.hidden_size = config.hidden_size
 
620
 
621
- self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
622
 
623
  self.feed_forward = InternLM2MLP(config)
624
  self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
@@ -629,10 +711,10 @@ class InternLM2DecoderLayer(nn.Module):
629
  hidden_states: torch.Tensor,
630
  attention_mask: Optional[torch.Tensor] = None,
631
  position_ids: Optional[torch.LongTensor] = None,
632
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
633
  output_attentions: Optional[bool] = False,
634
  use_cache: Optional[bool] = False,
635
- **kwargs,
636
  ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
637
  """
638
  Args:
@@ -648,12 +730,6 @@ class InternLM2DecoderLayer(nn.Module):
648
  (see `past_key_values`).
649
  past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
650
  """
651
- if "padding_mask" in kwargs:
652
- warnings.warn(
653
- "Passing `padding_mask` is deprecated and will be removed in v4.37. "
654
- "Please make sure use `attention_mask` instead.`"
655
- )
656
-
657
  residual = hidden_states
658
 
659
  hidden_states = self.attention_norm(hidden_states)
@@ -666,7 +742,7 @@ class InternLM2DecoderLayer(nn.Module):
666
  past_key_value=past_key_value,
667
  output_attentions=output_attentions,
668
  use_cache=use_cache,
669
- **kwargs,
670
  )
671
  hidden_states = residual + hidden_states
672
 
@@ -718,7 +794,12 @@ class InternLM2PreTrainedModel(PreTrainedModel):
718
  base_model_prefix = "model"
719
  supports_gradient_checkpointing = True
720
  _no_split_modules = ["InternLM2DecoderLayer"]
721
- _skip_keys_device_placement = "past_key_values"
 
 
 
 
 
722
 
723
  def _init_weights(self, module):
724
  std = self.config.initializer_range
@@ -767,14 +848,19 @@ InternLM2_INPUTS_DOCSTRING = r"""
767
  config.n_positions - 1]`.
768
 
769
  [What are position IDs?](../glossary#position-ids)
770
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
771
- when `config.use_cache=True`):
772
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
773
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
774
- `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
 
 
 
 
 
775
 
776
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
777
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
778
 
779
  If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
780
  have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
@@ -794,10 +880,14 @@ InternLM2_INPUTS_DOCSTRING = r"""
794
  more detail.
795
  return_dict (`bool`, *optional*):
796
  Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
 
 
 
 
797
  """
798
 
799
 
800
- # Modified from transformers.model.llama.modeling_llama.LlamaModel
801
  @add_start_docstrings(
802
  "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
803
  InternLM2_START_DOCSTRING,
@@ -820,7 +910,9 @@ class InternLM2Model(InternLM2PreTrainedModel):
820
 
821
  self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
822
 
823
- self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
 
 
824
  self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
825
 
826
  self.gradient_checkpointing = False
@@ -833,142 +925,96 @@ class InternLM2Model(InternLM2PreTrainedModel):
833
  def set_input_embeddings(self, value):
834
  self.tok_embeddings = value
835
 
836
- def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
837
- # create causal mask
838
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
839
- combined_attention_mask = None
840
- if input_shape[-1] > 1:
841
- combined_attention_mask = _make_causal_mask(
842
- input_shape,
843
- inputs_embeds.dtype,
844
- device=inputs_embeds.device,
845
- past_key_values_length=past_key_values_length,
846
- )
847
-
848
- if attention_mask is not None:
849
- # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
850
- expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
851
- inputs_embeds.device
852
- )
853
- combined_attention_mask = (
854
- expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
855
- )
856
-
857
- return combined_attention_mask
858
-
859
  @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
860
  def forward(
861
  self,
862
  input_ids: torch.LongTensor = None,
863
  attention_mask: Optional[torch.Tensor] = None,
864
  position_ids: Optional[torch.LongTensor] = None,
865
- past_key_values: Optional[List[torch.FloatTensor]] = None,
866
  inputs_embeds: Optional[torch.FloatTensor] = None,
867
  use_cache: Optional[bool] = None,
868
  output_attentions: Optional[bool] = None,
869
  output_hidden_states: Optional[bool] = None,
870
  return_dict: Optional[bool] = None,
 
871
  ) -> Union[Tuple, BaseModelOutputWithPast]:
872
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
873
  output_hidden_states = (
874
  output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
875
  )
876
  use_cache = use_cache if use_cache is not None else self.config.use_cache
877
-
878
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
879
 
880
- if self.config.attn_implementation == "flash_attention_2":
881
- _import_flash_attn()
882
-
883
- # retrieve input_ids and inputs_embeds
884
- if input_ids is not None and inputs_embeds is not None:
885
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
886
- elif input_ids is not None:
887
- batch_size, seq_length = input_ids.shape[:2]
888
- elif inputs_embeds is not None:
889
- batch_size, seq_length = inputs_embeds.shape[:2]
890
- else:
891
- raise ValueError("You have to specify either input_ids or inputs_embeds")
892
-
893
- seq_length_with_past = seq_length
894
- past_key_values_length = 0
895
- if past_key_values is not None:
896
- past_key_values_length = past_key_values[0][0].shape[2]
897
- seq_length_with_past = seq_length_with_past + past_key_values_length
898
 
899
- if position_ids is None:
900
- device = input_ids.device if input_ids is not None else inputs_embeds.device
901
- position_ids = torch.arange(
902
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
903
  )
904
- position_ids = position_ids.unsqueeze(0)
905
 
906
  if inputs_embeds is None:
907
  inputs_embeds = self.tok_embeddings(input_ids)
908
 
909
- if self.config.attn_implementation == "flash_attention_2":
910
- # 2d mask is passed through the layers
911
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
912
- else:
913
- if attention_mask is None:
914
- attention_mask = torch.ones(
915
- (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
916
- )
917
- attention_mask = self._prepare_decoder_attention_mask(
918
- attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
919
  )
 
 
 
 
 
 
920
 
921
  # embed positions
922
  hidden_states = inputs_embeds
923
 
924
- if self.gradient_checkpointing and self.training:
925
- if use_cache:
926
- logger.warning_once(
927
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
928
- )
929
- use_cache = False
930
-
931
  # decoder layers
932
  all_hidden_states = () if output_hidden_states else None
933
  all_self_attns = () if output_attentions else None
934
- next_decoder_cache = () if use_cache else None
935
 
936
- for idx, decoder_layer in enumerate(self.layers):
937
  if output_hidden_states:
938
  all_hidden_states += (hidden_states,)
939
 
940
- past_key_value = past_key_values[idx] if past_key_values is not None else None
941
-
942
  if self.gradient_checkpointing and self.training:
943
-
944
- def create_custom_forward(module):
945
- def custom_forward(*inputs):
946
- # None for past_key_value
947
- return module(*inputs, output_attentions, None)
948
-
949
- return custom_forward
950
-
951
- layer_outputs = torch.utils.checkpoint.checkpoint(
952
- create_custom_forward(decoder_layer),
953
  hidden_states,
954
- attention_mask,
955
  position_ids,
956
- None,
 
 
 
957
  )
958
  else:
959
  layer_outputs = decoder_layer(
960
  hidden_states,
961
- attention_mask=attention_mask,
962
  position_ids=position_ids,
963
- past_key_value=past_key_value,
964
  output_attentions=output_attentions,
965
  use_cache=use_cache,
 
966
  )
967
 
968
  hidden_states = layer_outputs[0]
969
 
970
  if use_cache:
971
- next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
972
 
973
  if output_attentions:
974
  all_self_attns += (layer_outputs[1],)
@@ -980,6 +1026,9 @@ class InternLM2Model(InternLM2PreTrainedModel):
980
  all_hidden_states += (hidden_states,)
981
 
982
  next_cache = next_decoder_cache if use_cache else None
 
 
 
983
  if not return_dict:
984
  return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
985
  return BaseModelOutputWithPast(
@@ -989,15 +1038,91 @@ class InternLM2Model(InternLM2PreTrainedModel):
989
  attentions=all_self_attns,
990
  )
991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
992
 
993
- # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
994
  class InternLM2ForCausalLM(InternLM2PreTrainedModel):
995
- """
996
- InternLM2 causal language model.
997
- """
998
 
999
  _auto_class = "AutoModelForCausalLM"
1000
-
1001
  _tied_weights_keys = ["output.weight"]
1002
 
1003
  def __init__(self, config):
@@ -1034,13 +1159,14 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1034
  input_ids: torch.LongTensor = None,
1035
  attention_mask: Optional[torch.Tensor] = None,
1036
  position_ids: Optional[torch.LongTensor] = None,
1037
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1038
  inputs_embeds: Optional[torch.FloatTensor] = None,
1039
  labels: Optional[torch.LongTensor] = None,
1040
  use_cache: Optional[bool] = None,
1041
  output_attentions: Optional[bool] = None,
1042
  output_hidden_states: Optional[bool] = None,
1043
  return_dict: Optional[bool] = None,
 
1044
  ) -> Union[Tuple, CausalLMOutputWithPast]:
1045
  r"""
1046
  Args:
@@ -1056,8 +1182,8 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1056
  ```python
1057
  >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1058
 
1059
- >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1060
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1061
 
1062
  >>> prompt = "Hey, are you conscious? Can you talk to me?"
1063
  >>> inputs = tokenizer(prompt, return_tensors="pt")
@@ -1085,10 +1211,19 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1085
  output_attentions=output_attentions,
1086
  output_hidden_states=output_hidden_states,
1087
  return_dict=return_dict,
 
1088
  )
1089
 
1090
  hidden_states = outputs[0]
1091
- logits = self.output(hidden_states)
 
 
 
 
 
 
 
 
1092
  logits = logits.float()
1093
 
1094
  loss = None
@@ -1117,19 +1252,48 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1117
  )
1118
 
1119
  def prepare_inputs_for_generation(
1120
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
 
 
 
 
 
 
 
1121
  ):
 
1122
  if past_key_values is not None:
1123
- past_length = past_key_values[0][0].shape[2]
1124
-
1125
- # Some generation methods already pass only the last input ID
1126
- if input_ids.shape[1] > past_length:
1127
- remove_prefix_length = past_length
 
 
 
 
1128
  else:
1129
- # Default to old behavior: keep only final ID
1130
- remove_prefix_length = input_ids.shape[1] - 1
1131
-
1132
- input_ids = input_ids[:, remove_prefix_length:]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133
 
1134
  position_ids = kwargs.get("position_ids", None)
1135
  if attention_mask is not None and position_ids is None:
@@ -1143,13 +1307,24 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1143
  if inputs_embeds is not None and past_key_values is None:
1144
  model_inputs = {"inputs_embeds": inputs_embeds}
1145
  else:
1146
- model_inputs = {"input_ids": input_ids}
 
 
 
 
 
 
 
 
 
 
1147
 
1148
  model_inputs.update(
1149
  {
1150
  "position_ids": position_ids,
 
1151
  "past_key_values": past_key_values,
1152
- "use_cache": kwargs.get("use_cache"),
1153
  "attention_mask": attention_mask,
1154
  }
1155
  )
@@ -1311,13 +1486,13 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1311
  return consumer()
1312
 
1313
 
1314
- # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1315
  @add_start_docstrings(
1316
  """
1317
  The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1318
 
1319
- [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1320
- as other causal models (e.g. GPT-2) do.
1321
 
1322
  Since it does classification on the last token, it requires to know the position of the last token. If a
1323
  `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
@@ -1328,9 +1503,7 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1328
  InternLM2_START_DOCSTRING,
1329
  )
1330
  class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1331
- """
1332
- InternLM2 sequence classification model.
1333
- """
1334
 
1335
  def __init__(self, config):
1336
  super().__init__(config)
@@ -1353,7 +1526,7 @@ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1353
  input_ids: torch.LongTensor = None,
1354
  attention_mask: Optional[torch.Tensor] = None,
1355
  position_ids: Optional[torch.LongTensor] = None,
1356
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1357
  inputs_embeds: Optional[torch.FloatTensor] = None,
1358
  labels: Optional[torch.LongTensor] = None,
1359
  use_cache: Optional[bool] = None,
@@ -1394,9 +1567,10 @@ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1394
  sequence_lengths = -1
1395
  else:
1396
  if input_ids is not None:
1397
- sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1398
- logits.device
1399
- )
 
1400
  else:
1401
  sequence_lengths = -1
1402
 
@@ -1408,8 +1582,7 @@ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1408
  if self.config.problem_type is None:
1409
  if self.num_labels == 1:
1410
  self.config.problem_type = "regression"
1411
-
1412
- elif self.num_labels > 1 and labels.dtype in (torch.long, torch.int):
1413
  self.config.problem_type = "single_label_classification"
1414
  else:
1415
  self.config.problem_type = "multi_label_classification"
@@ -1437,3 +1610,191 @@ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1437
  hidden_states=transformer_outputs.hidden_states,
1438
  attentions=transformer_outputs.attentions,
1439
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
  # See the License for the specific language governing permissions and
15
  # limitations under the License.
16
+ """PyTorch InternLM2.5 model."""
17
  import math
18
  import queue
19
  import threading
 
20
  from typing import List, Optional, Tuple, Union
21
 
22
  import torch
 
26
  from torch import nn
27
  from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
  from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
30
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
31
  from transformers.modeling_outputs import (
32
  BaseModelOutputWithPast,
33
  CausalLMOutputWithPast,
34
+ QuestionAnsweringModelOutput,
35
  SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
  )
38
  from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
40
  from transformers.utils import (
41
  add_start_docstrings,
42
  add_start_docstrings_to_model_forward,
43
+ is_flash_attn_greater_or_equal_2_10,
44
  logging,
45
  replace_return_docstrings,
46
  )
 
52
 
53
  from .configuration_internlm2 import InternLM2Config
54
 
 
 
 
55
 
56
+ try:
57
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
58
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
59
+ except:
60
+ pass
61
 
62
 
63
+ logger = logging.get_logger(__name__)
 
 
 
 
 
 
 
 
64
 
65
+ _CONFIG_FOR_DOC = "InternLM2Config"
 
 
 
66
 
67
 
 
68
  def _get_unpad_data(attention_mask):
69
  seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
70
  indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
71
  max_seqlen_in_batch = seqlens_in_batch.max().item()
72
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # pylint: disable=E1102
73
  return (
74
  indices,
75
  cu_seqlens,
 
77
  )
78
 
79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  class InternLM2RMSNorm(nn.Module):
81
+ """InternLM2RMSNorm is equivalent to T5LayerNorm."""
 
 
82
 
83
  def __init__(self, hidden_size, eps=1e-6):
 
 
 
84
  super().__init__()
85
  self.weight = nn.Parameter(torch.ones(hidden_size))
86
  self.variance_epsilon = eps
 
93
  return self.weight * hidden_states.to(input_dtype)
94
 
95
 
96
+ ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
97
+
98
+
99
  class InternLM2RotaryEmbedding(nn.Module):
100
+ """Rotary Position Embedding for the InternLM2 model. Credits to the Reddit user /u/lucidrains."""
 
 
101
 
102
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
103
  super().__init__()
104
+ self.scaling_factor = scaling_factor
105
  self.dim = dim
106
  self.max_position_embeddings = max_position_embeddings
107
  self.base = base
108
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
109
  self.register_buffer("inv_freq", inv_freq, persistent=False)
110
+ # For BC we register cos and sin cached
111
+ self.max_seq_len_cached = max_position_embeddings
112
 
113
+ @torch.no_grad()
114
+ def forward(self, x, position_ids):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  # x: [bs, num_attention_heads, seq_len, head_size]
116
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
117
+ position_ids_expanded = position_ids[:, None, :].float()
118
+ # Force float32 since bfloat16 loses precision on long contexts
119
+ # See https://github.com/huggingface/transformers/pull/29285
120
+ device_type = x.device.type
121
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
122
+ with torch.autocast(device_type=device_type, enabled=False):
123
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
124
+ emb = torch.cat((freqs, freqs), dim=-1)
125
+ cos = emb.cos()
126
+ sin = emb.sin()
127
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
128
 
 
 
 
 
129
 
 
 
130
  class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
131
  """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
132
 
133
+ def forward(self, x, position_ids):
134
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
135
+ position_ids = position_ids.float() / self.scaling_factor
136
+ cos, sin = super().forward(x, position_ids)
137
+ return cos, sin
 
 
 
 
 
 
 
 
 
138
 
139
 
 
140
  class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
141
  """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
142
+ Credits to the Reddit users /u/bloc97 and /u/emozilla"""
 
 
 
 
 
 
 
 
143
 
144
+ def forward(self, x, position_ids):
145
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
146
+ seq_len = torch.max(position_ids) + 1
147
  if seq_len > self.max_position_embeddings:
148
  base = self.base * (
149
  (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
150
  ) ** (self.dim / (self.dim - 2))
151
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim))
152
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
153
 
154
+ cos, sin = super().forward(x, position_ids)
155
+ return cos, sin
156
 
 
 
 
 
 
157
 
 
 
158
  def rotate_half(x):
159
  """Rotates half the hidden dims of the input."""
160
  x1 = x[..., : x.shape[-1] // 2]
 
162
  return torch.cat((-x2, x1), dim=-1)
163
 
164
 
165
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument
166
+ """Applies Rotary Position Embedding to the query and key tensors.
167
+
168
+ Args:
169
+ q (`torch.Tensor`): The query tensor.
170
+ k (`torch.Tensor`): The key tensor.
171
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
172
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
173
+ position_ids (`torch.Tensor`, *optional*):
174
+ Deprecated and unused.
175
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
176
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
177
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
178
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
179
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
180
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
181
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
182
+ Returns:
183
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
184
+ """
185
+ cos = cos.unsqueeze(unsqueeze_dim)
186
+ sin = sin.unsqueeze(unsqueeze_dim)
187
  q_embed = (q * cos) + (rotate_half(q) * sin)
188
  k_embed = (k * cos) + (rotate_half(k) * sin)
189
  return q_embed, k_embed
190
 
191
 
192
  class InternLM2MLP(nn.Module):
193
+ """MLP for InternLM2 model."""
 
 
194
 
195
  def __init__(self, config):
196
  super().__init__()
 
208
  return down_proj
209
 
210
 
 
211
  def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
212
  """
213
  This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
 
220
  return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
221
 
222
 
 
223
  class InternLM2Attention(nn.Module):
224
  """Multi-headed attention from 'Attention Is All You Need' paper"""
225
 
226
+ def __init__(self, config: InternLM2Config, layer_idx: Optional[int] = None):
227
  super().__init__()
228
  self.config = config
229
+ self.layer_idx = layer_idx
230
+ if layer_idx is None:
231
+ logger.warning_once(
232
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
233
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
234
+ "when creating this class."
235
+ )
236
+
237
  self.hidden_size = config.hidden_size
238
  self.num_heads = config.num_attention_heads
239
  self.head_dim = self.hidden_size // self.num_heads
240
  self.num_key_value_heads = config.num_key_value_heads
241
  self.num_key_value_groups = self.num_heads // self.num_key_value_heads
242
  self.max_position_embeddings = config.max_position_embeddings
243
+ self.rope_theta = config.rope_theta
244
  self.is_causal = True
245
 
246
  if (self.head_dim * self.num_heads) != self.hidden_size:
 
254
  (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
255
  bias=config.bias,
256
  )
 
257
  self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
258
+
259
  self._init_rope()
260
 
261
  def _init_rope(self):
 
263
  self.rotary_emb = InternLM2RotaryEmbedding(
264
  self.head_dim,
265
  max_position_embeddings=self.max_position_embeddings,
266
+ base=self.rope_theta,
267
  )
268
  else:
269
  scaling_type = self.config.rope_scaling["type"]
270
  scaling_factor = self.config.rope_scaling["factor"]
271
+ if scaling_type == "linear":
272
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
273
  self.head_dim,
274
  max_position_embeddings=self.max_position_embeddings,
 
275
  scaling_factor=scaling_factor,
276
+ base=self.rope_theta,
277
  )
278
+ elif scaling_type == "dynamic":
279
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
280
  self.head_dim,
281
  max_position_embeddings=self.max_position_embeddings,
 
282
  scaling_factor=scaling_factor,
283
+ base=self.rope_theta,
284
  )
285
  else:
286
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
 
 
 
 
287
 
288
  def forward(
289
  self,
290
  hidden_states: torch.Tensor,
291
  attention_mask: Optional[torch.Tensor] = None,
292
  position_ids: Optional[torch.LongTensor] = None,
293
+ past_key_value: Optional[Cache] = None,
294
  output_attentions: bool = False,
295
+ use_cache: bool = False, # pylint: disable=unused-argument
296
+ cache_position: Optional[torch.LongTensor] = None,
297
  ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
 
 
 
 
 
 
298
  bsz, q_len, _ = hidden_states.size()
299
 
300
+ if self.config.pretraining_tp > 1:
301
+ # split qkv_states by tp size
302
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
303
+ qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
304
+ qkv_states = torch.cat(
305
+ [F.linear(hidden_states, qkv_slice) for qkv_slice in qkv_slices], dim=-1 # pylint: disable=E1102
306
+ )
307
+ else:
308
+ qkv_states = self.wqkv(hidden_states)
309
 
310
  qkv_states = rearrange(
311
  qkv_states,
 
315
  )
316
 
317
  query_states = qkv_states[..., : self.num_key_value_groups, :]
318
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d").transpose(1, 2)
319
+ key_states = qkv_states[..., -2, :].transpose(1, 2)
320
+ value_states = qkv_states[..., -1, :].transpose(1, 2)
321
 
322
+ cos, sin = self.rotary_emb(value_states, position_ids)
 
 
 
 
 
 
 
323
  query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
324
 
325
  if past_key_value is not None:
326
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
327
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
328
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
 
 
329
 
330
  key_states = repeat_kv(key_states, self.num_key_value_groups)
331
  value_states = repeat_kv(value_states, self.num_key_value_groups)
332
 
333
  attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
334
 
335
+ if attention_mask is not None: # no matter the length, we just slice it
336
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
337
+ attn_weights = attn_weights + causal_mask
 
 
 
 
 
 
 
 
 
338
 
339
  # upcast attention to fp32
340
  attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
 
347
  )
348
 
349
  attn_output = attn_output.transpose(1, 2).contiguous()
350
+
351
  attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
352
 
353
+ if self.config.pretraining_tp > 1:
354
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
355
+ o_proj_slices = self.wo.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
356
+ attn_output = sum(
357
+ [
358
+ F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102
359
+ for i in range(self.config.pretraining_tp)
360
+ ]
361
+ )
362
+ else:
363
+ attn_output = self.wo(attn_output)
364
 
365
  if not output_attentions:
366
  attn_weights = None
 
368
  return attn_output, attn_weights, past_key_value
369
 
370
 
 
371
  class InternLM2FlashAttention2(InternLM2Attention):
372
  """
373
  InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
 
375
  flash attention and deal with padding tokens in case the input contains any of them.
376
  """
377
 
378
+ def __init__(self, *args, **kwargs):
379
+ super().__init__(*args, **kwargs)
380
+
381
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
382
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement,
383
+ # that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
384
+ # Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
385
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
386
+ # produces a wrong mask (top-left).
387
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
388
+
389
  def forward(
390
  self,
391
  hidden_states: torch.Tensor,
392
  attention_mask: Optional[torch.LongTensor] = None,
393
  position_ids: Optional[torch.LongTensor] = None,
394
+ past_key_value: Optional[Cache] = None,
395
  output_attentions: bool = False,
396
  use_cache: bool = False,
397
+ cache_position: Optional[torch.LongTensor] = None,
398
  ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
399
+ if isinstance(past_key_value, StaticCache):
400
+ raise ValueError(
401
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
402
+ "make sure to use `sdpa` in the mean time, and open an issue at "
403
+ "https://github.com/huggingface/transformers"
404
  )
405
 
 
 
 
406
  output_attentions = False
407
 
408
  bsz, q_len, _ = hidden_states.size()
 
425
  key_states = key_states.transpose(1, 2)
426
  value_states = value_states.transpose(1, 2)
427
 
428
+ cos, sin = self.rotary_emb(value_states, position_ids)
429
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
 
 
 
 
 
430
 
431
  if past_key_value is not None:
432
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
433
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
434
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
 
 
435
 
436
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout
437
+ # [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
438
+ # to be able to avoid many of these transpose/reshape/view.
439
  query_states = query_states.transpose(1, 2)
440
  key_states = key_states.transpose(1, 2)
441
  value_states = value_states.transpose(1, 2)
442
 
443
+ # dropout_rate = self.attention_dropout if self.training else 0.0
444
+ dropout_rate = 0.0
445
+
446
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
447
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
448
+ # cast them back in the correct dtype just to be sure everything works as expected.
449
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
450
+ # in fp32. (InternLM2RMSNorm handles it correctly)
451
+
452
+ input_dtype = query_states.dtype
453
+ if input_dtype == torch.float32:
454
+ if torch.is_autocast_enabled():
455
+ target_dtype = torch.get_autocast_gpu_dtype()
456
+ # Handle the case where the model is quantized
457
+ elif hasattr(self.config, "_pre_quantization_dtype"):
458
+ target_dtype = self.config._pre_quantization_dtype
459
+ else:
460
+ target_dtype = self.wqkv.weight.dtype
461
+
462
+ logger.warning_once(
463
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
464
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
465
+ f" {target_dtype}."
466
+ )
467
+
468
+ query_states = query_states.to(target_dtype)
469
+ key_states = key_states.to(target_dtype)
470
+ value_states = value_states.to(target_dtype)
471
+
472
+ attn_output = self._flash_attention_forward(
473
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
474
+ )
475
+
476
  attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
477
  attn_output = self.wo(attn_output)
478
 
479
  if not output_attentions:
480
  attn_weights = None
481
 
482
+ return attn_output, attn_weights, past_key_value # pylint: disable=E0606
483
 
484
  def _flash_attention_forward(
485
  self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
 
498
  attention_mask (`torch.Tensor`):
499
  The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
500
  position of padding tokens and 1 for the position of non-padding tokens.
501
+ dropout (`float`):
502
  Attention dropout
503
  softmax_scale (`float`, *optional*):
504
  The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
505
  """
506
+ if not self._flash_attn_uses_top_left_mask:
507
+ causal = self.is_causal
508
+ else:
509
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
510
+ # For details, please see the comment in InternLM2FlashAttention2 __init__.
511
+ causal = self.is_causal and query_length != 1
512
+
513
  # Contains at least one padding token in the sequence
 
514
  if attention_mask is not None:
515
  batch_size = query_states.shape[0]
516
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
517
  query_states, key_states, value_states, attention_mask, query_length
518
  )
519
 
520
  cu_seqlens_q, cu_seqlens_k = cu_seq_lens
521
  max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
522
 
523
+ attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606
524
  query_states,
525
  key_states,
526
  value_states,
 
533
  causal=causal,
534
  )
535
 
536
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) # pylint: disable=E0606
537
  else:
538
+ attn_output = flash_attn_func( # pylint: disable=E0606
539
  query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
540
  )
541
 
542
  return attn_output
543
 
544
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
545
  indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
546
  batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
547
 
548
+ key_layer = index_first_axis( # pylint: disable=E0606
549
  key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
550
  )
551
+ value_layer = index_first_axis( # pylint: disable=E0606
552
  value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
553
  )
 
554
  if query_length == kv_seq_len:
555
+ query_layer = index_first_axis( # pylint: disable=E0606
556
  query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
557
  )
558
  cu_seqlens_q = cu_seqlens_k
 
568
  else:
569
  # The -q_len: slice assumes left padding.
570
  attention_mask = attention_mask[:, -query_length:]
571
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606
572
+ query_layer, attention_mask
573
+ )
574
 
575
  return (
576
  query_layer,
577
  key_layer,
578
  value_layer,
579
+ indices_q,
580
  (cu_seqlens_q, cu_seqlens_k),
581
  (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
582
  )
583
 
584
 
585
+ # Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
586
+ class InternLM2SdpaAttention(InternLM2Attention):
587
+ """
588
+ InternLM2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
589
+ `InternLM2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
590
+ to adapt to SDPA API.
591
+ """
592
+
593
+ # Adapted from InternLM2Attention.forward
594
+ def forward(
595
+ self,
596
+ hidden_states: torch.Tensor,
597
+ attention_mask: Optional[torch.Tensor] = None,
598
+ position_ids: Optional[torch.LongTensor] = None,
599
+ past_key_value: Optional[Cache] = None,
600
+ output_attentions: bool = False,
601
+ use_cache: bool = False,
602
+ cache_position: Optional[torch.LongTensor] = None,
603
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
604
+ if output_attentions:
605
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
606
+ # once this is implemented.
607
+ logger.warning_once(
608
+ "InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` "
609
+ "does not support `output_attentions=True`. Falling back to the manual attention implementation, "
610
+ "but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
611
+ 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
612
+ )
613
+ return super().forward(
614
+ hidden_states=hidden_states,
615
+ attention_mask=attention_mask,
616
+ position_ids=position_ids,
617
+ past_key_value=past_key_value,
618
+ output_attentions=output_attentions,
619
+ use_cache=use_cache,
620
+ cache_position=cache_position,
621
+ )
622
+
623
+ bsz, q_len, _ = hidden_states.size()
624
+
625
+ qkv_states = self.wqkv(hidden_states)
626
+
627
+ qkv_states = rearrange(
628
+ qkv_states,
629
+ "b q (h gs d) -> b q h gs d",
630
+ gs=2 + self.num_key_value_groups,
631
+ d=self.head_dim,
632
+ )
633
+
634
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
635
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
636
+ key_states = qkv_states[..., -2, :]
637
+ value_states = qkv_states[..., -1, :]
638
+
639
+ query_states = query_states.transpose(1, 2)
640
+ key_states = key_states.transpose(1, 2)
641
+ value_states = value_states.transpose(1, 2)
642
+
643
+ cos, sin = self.rotary_emb(value_states, position_ids)
644
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
645
+
646
+ if past_key_value is not None:
647
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
648
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
649
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
650
+
651
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
652
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
653
+
654
+ causal_mask = attention_mask
655
+ if attention_mask is not None:
656
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
657
+
658
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
659
+ # custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
660
+ if query_states.device.type == "cuda" and causal_mask is not None:
661
+ query_states = query_states.contiguous()
662
+ key_states = key_states.contiguous()
663
+ value_states = value_states.contiguous()
664
+
665
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
666
+ # an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
667
+ # options. An inline conditional prevents dynamic shapes from compiling.
668
+ is_causal = bool(causal_mask is None and q_len > 1)
669
+
670
+ attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102
671
+ query_states,
672
+ key_states,
673
+ value_states,
674
+ attn_mask=causal_mask,
675
+ dropout_p=0.0,
676
+ is_causal=is_causal,
677
+ )
678
+
679
+ attn_output = attn_output.transpose(1, 2).contiguous()
680
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
681
+
682
+ attn_output = self.wo(attn_output)
683
+
684
+ return attn_output, None, past_key_value
685
+
686
+
687
  INTERNLM2_ATTENTION_CLASSES = {
688
  "eager": InternLM2Attention,
689
  "flash_attention_2": InternLM2FlashAttention2,
690
+ "sdpa": InternLM2SdpaAttention,
691
  }
692
 
693
 
694
+ # Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
695
  class InternLM2DecoderLayer(nn.Module):
696
+ """InternLM2 Decoder Layer. This module is a single layer of the InternLM2 model."""
 
 
697
 
698
+ def __init__(self, config: InternLM2Config, layer_idx: int):
699
  super().__init__()
700
  self.hidden_size = config.hidden_size
701
+ self.layer_idx = layer_idx
702
 
703
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config, layer_idx=layer_idx)
704
 
705
  self.feed_forward = InternLM2MLP(config)
706
  self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 
711
  hidden_states: torch.Tensor,
712
  attention_mask: Optional[torch.Tensor] = None,
713
  position_ids: Optional[torch.LongTensor] = None,
714
+ past_key_value: Optional[Cache] = None,
715
  output_attentions: Optional[bool] = False,
716
  use_cache: Optional[bool] = False,
717
+ cache_position: Optional[torch.LongTensor] = None,
718
  ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
719
  """
720
  Args:
 
730
  (see `past_key_values`).
731
  past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
732
  """
 
 
 
 
 
 
733
  residual = hidden_states
734
 
735
  hidden_states = self.attention_norm(hidden_states)
 
742
  past_key_value=past_key_value,
743
  output_attentions=output_attentions,
744
  use_cache=use_cache,
745
+ cache_position=cache_position,
746
  )
747
  hidden_states = residual + hidden_states
748
 
 
794
  base_model_prefix = "model"
795
  supports_gradient_checkpointing = True
796
  _no_split_modules = ["InternLM2DecoderLayer"]
797
+ _skip_keys_device_placement = ["past_key_values"]
798
+ _supports_flash_attn_2 = True
799
+ _supports_sdpa = True
800
+ _supports_cache_class = True
801
+ _supports_quantized_cache = True
802
+ _supports_static_cache = True
803
 
804
  def _init_weights(self, module):
805
  std = self.config.initializer_range
 
848
  config.n_positions - 1]`.
849
 
850
  [What are position IDs?](../glossary#position-ids)
851
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
852
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
853
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
854
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
855
+
856
+ Two formats are allowed:
857
+ - a [`~cache_utils.Cache`] instance;
858
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
859
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
860
+ cache format.
861
 
862
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
863
+ legacy cache format will be returned.
864
 
865
  If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
866
  have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
 
880
  more detail.
881
  return_dict (`bool`, *optional*):
882
  Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
883
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
884
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
885
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
886
+ the complete sequence length.
887
  """
888
 
889
 
890
+ # Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
891
  @add_start_docstrings(
892
  "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
893
  InternLM2_START_DOCSTRING,
 
910
 
911
  self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
912
 
913
+ self.layers = nn.ModuleList(
914
+ [InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
915
+ )
916
  self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
917
 
918
  self.gradient_checkpointing = False
 
925
  def set_input_embeddings(self, value):
926
  self.tok_embeddings = value
927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
928
  @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
929
  def forward(
930
  self,
931
  input_ids: torch.LongTensor = None,
932
  attention_mask: Optional[torch.Tensor] = None,
933
  position_ids: Optional[torch.LongTensor] = None,
934
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
935
  inputs_embeds: Optional[torch.FloatTensor] = None,
936
  use_cache: Optional[bool] = None,
937
  output_attentions: Optional[bool] = None,
938
  output_hidden_states: Optional[bool] = None,
939
  return_dict: Optional[bool] = None,
940
+ cache_position: Optional[torch.LongTensor] = None,
941
  ) -> Union[Tuple, BaseModelOutputWithPast]:
942
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
943
  output_hidden_states = (
944
  output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
945
  )
946
  use_cache = use_cache if use_cache is not None else self.config.use_cache
 
947
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
948
 
949
+ if (input_ids is None) ^ (inputs_embeds is not None):
950
+ raise ValueError(
951
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
952
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
953
 
954
+ if self.gradient_checkpointing and self.training and use_cache:
955
+ logger.warning_once(
956
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
 
957
  )
958
+ use_cache = False
959
 
960
  if inputs_embeds is None:
961
  inputs_embeds = self.tok_embeddings(input_ids)
962
 
963
+ return_legacy_cache = False
964
+ if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs)
965
+ return_legacy_cache = True
966
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
967
+
968
+ if cache_position is None:
969
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
970
+ cache_position = torch.arange(
971
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
 
972
  )
973
+ if position_ids is None:
974
+ position_ids = cache_position.unsqueeze(0)
975
+
976
+ causal_mask = self._update_causal_mask(
977
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
978
+ )
979
 
980
  # embed positions
981
  hidden_states = inputs_embeds
982
 
 
 
 
 
 
 
 
983
  # decoder layers
984
  all_hidden_states = () if output_hidden_states else None
985
  all_self_attns = () if output_attentions else None
986
+ next_decoder_cache = None
987
 
988
+ for decoder_layer in self.layers:
989
  if output_hidden_states:
990
  all_hidden_states += (hidden_states,)
991
 
 
 
992
  if self.gradient_checkpointing and self.training:
993
+ layer_outputs = self._gradient_checkpointing_func(
994
+ decoder_layer.__call__,
 
 
 
 
 
 
 
 
995
  hidden_states,
996
+ causal_mask,
997
  position_ids,
998
+ past_key_values,
999
+ output_attentions,
1000
+ use_cache,
1001
+ cache_position,
1002
  )
1003
  else:
1004
  layer_outputs = decoder_layer(
1005
  hidden_states,
1006
+ attention_mask=causal_mask,
1007
  position_ids=position_ids,
1008
+ past_key_value=past_key_values,
1009
  output_attentions=output_attentions,
1010
  use_cache=use_cache,
1011
+ cache_position=cache_position,
1012
  )
1013
 
1014
  hidden_states = layer_outputs[0]
1015
 
1016
  if use_cache:
1017
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1018
 
1019
  if output_attentions:
1020
  all_self_attns += (layer_outputs[1],)
 
1026
  all_hidden_states += (hidden_states,)
1027
 
1028
  next_cache = next_decoder_cache if use_cache else None
1029
+ if return_legacy_cache:
1030
+ next_cache = next_cache.to_legacy_cache()
1031
+
1032
  if not return_dict:
1033
  return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1034
  return BaseModelOutputWithPast(
 
1038
  attentions=all_self_attns,
1039
  )
1040
 
1041
+ def _update_causal_mask(
1042
+ self,
1043
+ attention_mask: torch.Tensor,
1044
+ input_tensor: torch.Tensor,
1045
+ cache_position: torch.Tensor,
1046
+ past_key_values: Cache,
1047
+ output_attentions: bool,
1048
+ ):
1049
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
1050
+ # even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
1051
+ # each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
1052
+ # VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
1053
+ # See more context in https://github.com/huggingface/transformers/pull/29114
1054
 
1055
+ if self.config.attn_implementation == "flash_attention_2":
1056
+ if attention_mask is not None and 0.0 in attention_mask:
1057
+ return attention_mask
1058
+ return None
1059
+
1060
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1061
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1062
+ # to infer the attention mask.
1063
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1064
+ using_static_cache = isinstance(past_key_values, StaticCache)
1065
+
1066
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
1067
+ if self.config.attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
1068
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1069
+ attention_mask,
1070
+ inputs_embeds=input_tensor,
1071
+ past_key_values_length=past_seen_tokens,
1072
+ is_training=self.training,
1073
+ ):
1074
+ return None
1075
+
1076
+ dtype, device = input_tensor.dtype, input_tensor.device
1077
+ min_dtype = torch.finfo(dtype).min
1078
+ sequence_length = input_tensor.shape[1]
1079
+ if using_static_cache:
1080
+ target_length = past_key_values.get_max_length()
1081
+ else:
1082
+ target_length = (
1083
+ attention_mask.shape[-1]
1084
+ if isinstance(attention_mask, torch.Tensor)
1085
+ else past_seen_tokens + sequence_length + 1
1086
+ )
1087
+
1088
+ if attention_mask is not None and attention_mask.dim() == 4:
1089
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1090
+ if attention_mask.max() != 0:
1091
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
1092
+ causal_mask = attention_mask
1093
+ else:
1094
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1095
+ if sequence_length != 1:
1096
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1097
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1098
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1099
+ if attention_mask is not None:
1100
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1101
+ mask_length = attention_mask.shape[-1]
1102
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1103
+ padding_mask = padding_mask == 0
1104
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1105
+ padding_mask, min_dtype
1106
+ )
1107
+ if (
1108
+ self.config.attn_implementation == "sdpa"
1109
+ and attention_mask is not None
1110
+ and attention_mask.device.type == "cuda"
1111
+ and not output_attentions
1112
+ ):
1113
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1114
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1115
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1116
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) # pylint: disable=E1120
1117
+
1118
+ return causal_mask
1119
+
1120
+
1121
+ # Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
1122
  class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1123
+ """Causal language model (CLM) for InternLM2."""
 
 
1124
 
1125
  _auto_class = "AutoModelForCausalLM"
 
1126
  _tied_weights_keys = ["output.weight"]
1127
 
1128
  def __init__(self, config):
 
1159
  input_ids: torch.LongTensor = None,
1160
  attention_mask: Optional[torch.Tensor] = None,
1161
  position_ids: Optional[torch.LongTensor] = None,
1162
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1163
  inputs_embeds: Optional[torch.FloatTensor] = None,
1164
  labels: Optional[torch.LongTensor] = None,
1165
  use_cache: Optional[bool] = None,
1166
  output_attentions: Optional[bool] = None,
1167
  output_hidden_states: Optional[bool] = None,
1168
  return_dict: Optional[bool] = None,
1169
+ cache_position: Optional[torch.LongTensor] = None,
1170
  ) -> Union[Tuple, CausalLMOutputWithPast]:
1171
  r"""
1172
  Args:
 
1182
  ```python
1183
  >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1184
 
1185
+ >>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1186
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
1187
 
1188
  >>> prompt = "Hey, are you conscious? Can you talk to me?"
1189
  >>> inputs = tokenizer(prompt, return_tensors="pt")
 
1211
  output_attentions=output_attentions,
1212
  output_hidden_states=output_hidden_states,
1213
  return_dict=return_dict,
1214
+ cache_position=cache_position,
1215
  )
1216
 
1217
  hidden_states = outputs[0]
1218
+ if self.config.pretraining_tp > 1:
1219
+ output_slices = self.output.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1220
+ logits = [
1221
+ F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable
1222
+ for i in range(self.config.pretraining_tp)
1223
+ ]
1224
+ logits = torch.cat(logits, dim=-1)
1225
+ else:
1226
+ logits = self.output(hidden_states)
1227
  logits = logits.float()
1228
 
1229
  loss = None
 
1252
  )
1253
 
1254
  def prepare_inputs_for_generation(
1255
+ self,
1256
+ input_ids,
1257
+ past_key_values=None,
1258
+ attention_mask=None,
1259
+ inputs_embeds=None,
1260
+ cache_position=None,
1261
+ use_cache=True,
1262
+ **kwargs,
1263
  ):
1264
+ past_length = 0
1265
  if past_key_values is not None:
1266
+ if isinstance(past_key_values, Cache):
1267
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1268
+ max_cache_length = (
1269
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1270
+ if past_key_values.get_max_length() is not None
1271
+ else None
1272
+ )
1273
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1274
+ # TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
1275
  else:
1276
+ cache_length = past_length = past_key_values[0][0].shape[2]
1277
+ max_cache_length = None
1278
+
1279
+ # Keep only the unprocessed tokens:
1280
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1281
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
1282
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1283
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1284
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1285
+ # input_ids based on the past_length.
1286
+ elif past_length < input_ids.shape[1]:
1287
+ input_ids = input_ids[:, past_length:]
1288
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1289
+
1290
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1291
+ if (
1292
+ max_cache_length is not None
1293
+ and attention_mask is not None
1294
+ and cache_length + input_ids.shape[1] > max_cache_length
1295
+ ):
1296
+ attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130
1297
 
1298
  position_ids = kwargs.get("position_ids", None)
1299
  if attention_mask is not None and position_ids is None:
 
1307
  if inputs_embeds is not None and past_key_values is None:
1308
  model_inputs = {"inputs_embeds": inputs_embeds}
1309
  else:
1310
+ # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
1311
+ # recompiles graphs as the stride of the inputs is a guard.
1312
+ # Ref: https://github.com/huggingface/transformers/pull/29114
1313
+ # TODO: use `next_tokens` directly instead.
1314
+ model_inputs = {"input_ids": input_ids.contiguous()}
1315
+
1316
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1317
+ if cache_position is None:
1318
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1319
+ elif use_cache:
1320
+ cache_position = cache_position[-input_length:]
1321
 
1322
  model_inputs.update(
1323
  {
1324
  "position_ids": position_ids,
1325
+ "cache_position": cache_position,
1326
  "past_key_values": past_key_values,
1327
+ "use_cache": use_cache,
1328
  "attention_mask": attention_mask,
1329
  }
1330
  )
 
1486
  return consumer()
1487
 
1488
 
1489
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1490
  @add_start_docstrings(
1491
  """
1492
  The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1493
 
1494
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1495
+ (e.g. GPT-2) do.
1496
 
1497
  Since it does classification on the last token, it requires to know the position of the last token. If a
1498
  `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
 
1503
  InternLM2_START_DOCSTRING,
1504
  )
1505
  class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1506
+ """Sequence Classification Head for InternLM2 Model."""
 
 
1507
 
1508
  def __init__(self, config):
1509
  super().__init__(config)
 
1526
  input_ids: torch.LongTensor = None,
1527
  attention_mask: Optional[torch.Tensor] = None,
1528
  position_ids: Optional[torch.LongTensor] = None,
1529
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1530
  inputs_embeds: Optional[torch.FloatTensor] = None,
1531
  labels: Optional[torch.LongTensor] = None,
1532
  use_cache: Optional[bool] = None,
 
1567
  sequence_lengths = -1
1568
  else:
1569
  if input_ids is not None:
1570
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1571
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1572
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1573
+ sequence_lengths = sequence_lengths.to(logits.device)
1574
  else:
1575
  sequence_lengths = -1
1576
 
 
1582
  if self.config.problem_type is None:
1583
  if self.num_labels == 1:
1584
  self.config.problem_type = "regression"
1585
+ elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)):
 
1586
  self.config.problem_type = "single_label_classification"
1587
  else:
1588
  self.config.problem_type = "multi_label_classification"
 
1610
  hidden_states=transformer_outputs.hidden_states,
1611
  attentions=transformer_outputs.attentions,
1612
  )
1613
+
1614
+
1615
+ # Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
1616
+ @add_start_docstrings(
1617
+ """
1618
+ The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
1619
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1620
+ """,
1621
+ InternLM2_START_DOCSTRING,
1622
+ )
1623
+ class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
1624
+ """Question Answering model for InternLM2."""
1625
+
1626
+ base_model_prefix = "transformer"
1627
+
1628
+ def __init__(self, config):
1629
+ super().__init__(config)
1630
+ self.transformer = InternLM2Model(config)
1631
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1632
+
1633
+ # Initialize weights and apply final processing
1634
+ self.post_init()
1635
+
1636
+ def get_input_embeddings(self):
1637
+ return self.transformer.tok_embeddings
1638
+
1639
+ def set_input_embeddings(self, value):
1640
+ self.transformer.tok_embeddings = value
1641
+
1642
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1643
+ def forward(
1644
+ self,
1645
+ input_ids: Optional[torch.LongTensor] = None,
1646
+ attention_mask: Optional[torch.FloatTensor] = None,
1647
+ position_ids: Optional[torch.LongTensor] = None,
1648
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1649
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1650
+ start_positions: Optional[torch.LongTensor] = None,
1651
+ end_positions: Optional[torch.LongTensor] = None,
1652
+ output_attentions: Optional[bool] = None,
1653
+ output_hidden_states: Optional[bool] = None,
1654
+ return_dict: Optional[bool] = None,
1655
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1656
+ r"""
1657
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1658
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1659
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1660
+ are not taken into account for computing the loss.
1661
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1662
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1663
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1664
+ are not taken into account for computing the loss.
1665
+ """
1666
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1667
+
1668
+ outputs = self.transformer(
1669
+ input_ids,
1670
+ attention_mask=attention_mask,
1671
+ position_ids=position_ids,
1672
+ past_key_values=past_key_values,
1673
+ inputs_embeds=inputs_embeds,
1674
+ output_attentions=output_attentions,
1675
+ output_hidden_states=output_hidden_states,
1676
+ return_dict=return_dict,
1677
+ )
1678
+
1679
+ sequence_output = outputs[0]
1680
+
1681
+ logits = self.qa_outputs(sequence_output)
1682
+ start_logits, end_logits = logits.split(1, dim=-1)
1683
+ start_logits = start_logits.squeeze(-1).contiguous()
1684
+ end_logits = end_logits.squeeze(-1).contiguous()
1685
+
1686
+ total_loss = None
1687
+ if start_positions is not None and end_positions is not None:
1688
+ # If we are on multi-GPU, split add a dimension
1689
+ if len(start_positions.size()) > 1:
1690
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1691
+ if len(end_positions.size()) > 1:
1692
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1693
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1694
+ ignored_index = start_logits.size(1)
1695
+ start_positions = start_positions.clamp(0, ignored_index)
1696
+ end_positions = end_positions.clamp(0, ignored_index)
1697
+
1698
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1699
+ start_loss = loss_fct(start_logits, start_positions)
1700
+ end_loss = loss_fct(end_logits, end_positions)
1701
+ total_loss = (start_loss + end_loss) / 2
1702
+
1703
+ if not return_dict:
1704
+ output = (start_logits, end_logits) + outputs[2:]
1705
+ return ((total_loss,) + output) if total_loss is not None else output
1706
+
1707
+ return QuestionAnsweringModelOutput(
1708
+ loss=total_loss,
1709
+ start_logits=start_logits,
1710
+ end_logits=end_logits,
1711
+ hidden_states=outputs.hidden_states,
1712
+ attentions=outputs.attentions,
1713
+ )
1714
+
1715
+
1716
+ # Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
1717
+ @add_start_docstrings(
1718
+ """
1719
+ The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1720
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1721
+ """,
1722
+ InternLM2_START_DOCSTRING,
1723
+ )
1724
+ class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
1725
+ """Token classification model for InternLM2."""
1726
+
1727
+ def __init__(self, config):
1728
+ super().__init__(config)
1729
+ self.num_labels = config.num_labels
1730
+ self.model = InternLM2Model(config)
1731
+ if getattr(config, "classifier_dropout", None) is not None:
1732
+ classifier_dropout = config.classifier_dropout
1733
+ elif getattr(config, "hidden_dropout", None) is not None:
1734
+ classifier_dropout = config.hidden_dropout
1735
+ else:
1736
+ classifier_dropout = 0.1
1737
+ self.dropout = nn.Dropout(classifier_dropout)
1738
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1739
+
1740
+ # Initialize weights and apply final processing
1741
+ self.post_init()
1742
+
1743
+ def get_input_embeddings(self):
1744
+ return self.model.tok_embeddings
1745
+
1746
+ def set_input_embeddings(self, value):
1747
+ self.model.tok_embeddings = value
1748
+
1749
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1750
+ def forward(
1751
+ self,
1752
+ input_ids: torch.LongTensor = None,
1753
+ attention_mask: Optional[torch.Tensor] = None,
1754
+ position_ids: Optional[torch.LongTensor] = None,
1755
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1756
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1757
+ labels: Optional[torch.LongTensor] = None,
1758
+ use_cache: Optional[bool] = None,
1759
+ output_attentions: Optional[bool] = None,
1760
+ output_hidden_states: Optional[bool] = None,
1761
+ return_dict: Optional[bool] = None,
1762
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1763
+ r"""
1764
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1765
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1766
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1767
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1768
+ """
1769
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1770
+
1771
+ outputs = self.model(
1772
+ input_ids,
1773
+ attention_mask=attention_mask,
1774
+ position_ids=position_ids,
1775
+ past_key_values=past_key_values,
1776
+ inputs_embeds=inputs_embeds,
1777
+ use_cache=use_cache,
1778
+ output_attentions=output_attentions,
1779
+ output_hidden_states=output_hidden_states,
1780
+ return_dict=return_dict,
1781
+ )
1782
+ sequence_output = outputs[0]
1783
+ sequence_output = self.dropout(sequence_output)
1784
+ logits = self.score(sequence_output)
1785
+
1786
+ loss = None
1787
+ if labels is not None:
1788
+ loss_fct = CrossEntropyLoss()
1789
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1790
+
1791
+ if not return_dict:
1792
+ output = (logits,) + outputs[2:]
1793
+ return ((loss,) + output) if loss is not None else output
1794
+
1795
+ return TokenClassifierOutput(
1796
+ loss=loss,
1797
+ logits=logits,
1798
+ hidden_states=outputs.hidden_states,
1799
+ attentions=outputs.attentions,
1800
+ )