RangiLyu commited on
Commit
bebb001
1 Parent(s): c955e86

update links in readme

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -38,13 +38,13 @@ InternLM2.5 has open-sourced a 7 billion parameter base model and a chat model t
38
 
39
  - **1M Context window**: Nearly perfect at finding needles in the haystack with 1M-long context, with leading performance on long-context tasks like LongBench. Try it with [LMDeploy](./chat/lmdeploy.md) for 1M-context inference.
40
 
41
- - **Stronger tool use**: InternLM2.5 supports gathering information from more than 100 web pages, corresponding implementation will be released in [Lagent](https://github.com/InternLM/lagent/tree/main) soon. InternLM2.5 has better tool utilization-related capabilities in instruction following, tool selection and reflection. See [examples](./agent/).
42
 
43
  ## InternLM2.5-7B-Chat
44
 
45
  ### Performance Evaluation
46
 
47
- We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://opencompass.org.cn/rank) for more evaluation results.
48
 
49
  | Dataset\Models |Qwen2-7B-Instruct | Yi-1.5-9B-Chat | GLM-4-9B-Chat | Llama-3-8B-Instruct | Gemma2-9B-IT | InternLM2.5-7B-Chat | Llama-3-70B-Instruct
50
  | --- | --- | --- | --- | --- | --- | --- | --- |
@@ -189,13 +189,13 @@ InternLM2.5 ,即书生·浦语大模型第 2.5 代,开源了面向实用场
189
 
190
  - 卓越的推理性能:在数学推理方面取得了同量级模型最优精度,超越了 Llama3 和 Gemma2-9B。
191
  - 有效支持百万字超长上下文:模型在 1 百万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 等长文任务中的表现也达到开源模型中的领先水平。 可以通过 [LMDeploy](./chat/lmdeploy_zh_cn.md) 尝试百万字超长上下文推理。
192
- - 工具调用能力整体升级:InternLM2.5 支持从上百个网页搜集有效信息进行分析推理,相关实现将于近期开源到 [Lagent](https://github.com/InternLM/lagent/tree/main)。InternLM2.5 具有更强和更具有泛化性的指令理解、工具筛选与结果反思等能力,新版模型可以更可靠地支持复杂智能体的搭建,支持对工具进行有效的多轮调用,完成较复杂的任务。可以查看更多[样例](./agent/)。
193
 
194
  ## InternLM2.5-7B-Chat
195
 
196
  ### 性能评测
197
 
198
- 我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://opencompass.org.cn/rank)获取更多的评测结果。
199
 
200
  | 评测集\模型 |Qwen2-7B-Instruct | Yi-1.5-9B-Chat | GLM-4-9B-Chat | Llama-3-8B-Instruct | Gemma2-9B-IT | InternLM2.5-7B-Chat | Llama-3-70B-Instruct
201
  | --- | --- | --- | --- | --- | --- | --- | --- |
 
38
 
39
  - **1M Context window**: Nearly perfect at finding needles in the haystack with 1M-long context, with leading performance on long-context tasks like LongBench. Try it with [LMDeploy](./chat/lmdeploy.md) for 1M-context inference.
40
 
41
+ - **Stronger tool use**: InternLM2.5 supports gathering information from more than 100 web pages, corresponding implementation will be released in [Lagent](https://github.com/InternLM/lagent/tree/main) soon. InternLM2.5 has better tool utilization-related capabilities in instruction following, tool selection and reflection. See [examples](https://github.com/InternLM/InternLM/blob/main/agent/lagent.md).
42
 
43
  ## InternLM2.5-7B-Chat
44
 
45
  ### Performance Evaluation
46
 
47
+ We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://rank.opencompass.org.cn) for more evaluation results.
48
 
49
  | Dataset\Models |Qwen2-7B-Instruct | Yi-1.5-9B-Chat | GLM-4-9B-Chat | Llama-3-8B-Instruct | Gemma2-9B-IT | InternLM2.5-7B-Chat | Llama-3-70B-Instruct
50
  | --- | --- | --- | --- | --- | --- | --- | --- |
 
189
 
190
  - 卓越的推理性能:在数学推理方面取得了同量级模型最优精度,超越了 Llama3 和 Gemma2-9B。
191
  - 有效支持百万字超长上下文:模型在 1 百万字长输入中几乎完美地实现长文“大海捞针”,而且在 LongBench 等长文任务中的表现也达到开源模型中的领先水平。 可以通过 [LMDeploy](./chat/lmdeploy_zh_cn.md) 尝试百万字超长上下文推理。
192
+ - 工具调用能力整体升级:InternLM2.5 支持从上百个网页搜集有效信息进行分析推理,相关实现将于近期开源到 [Lagent](https://github.com/InternLM/lagent/tree/main)。InternLM2.5 具有更强和更具有泛化性的指令理解、工具筛选与结果反思等能力,新版模型可以更可靠地支持复杂智能体的搭建,支持对工具进行有效的多轮调用,完成较复杂的任务。可以查看更多[样例](https://github.com/InternLM/InternLM/blob/main/agent/lagent.md)。
193
 
194
  ## InternLM2.5-7B-Chat
195
 
196
  ### 性能评测
197
 
198
+ 我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://rank.opencompass.org.cn)获取更多的评测结果。
199
 
200
  | 评测集\模型 |Qwen2-7B-Instruct | Yi-1.5-9B-Chat | GLM-4-9B-Chat | Llama-3-8B-Instruct | Gemma2-9B-IT | InternLM2.5-7B-Chat | Llama-3-70B-Instruct
201
  | --- | --- | --- | --- | --- | --- | --- | --- |