File size: 9,677 Bytes
56ab0a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: camera:It has no camera but, I can always buy and install one easy.
- text: Acer:Acer was no help and Garmin could not determine the problem(after spending
    about 2 hours with me), so I returned it and purchased a Toshiba R700 that seems
    even nicer and I was able to load all of my software with no problem.
- text: memory:I've been impressed with the battery life and the performance for such
    a small amount of memory.
- text: speed:Yes, a Mac is much more money than the average laptop out there, but
    there is no comparison in style, speed and just cool factor.
- text: fiance:I got it back and my built-in webcam and built-in mic were shorting
    out anytime I touched the lid, (mind you this was my means of communication with
    my fiance who was deployed) but I suffered thru it and would constandly have to
    reset the computer to be able to use my cam and mic anytime they went out.
pipeline_tag: text-classification
inference: false
base_model: sentence-transformers/all-MiniLM-L6-v2
model-index:
- name: SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: tomaarsen/setfit-absa-semeval-laptops
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.8239700374531835
      name: Accuracy
---

# SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

1. Use a spaCy model to select possible aspect span candidates.
2. **Use this SetFit model to filter these possible aspect span candidates.**
3. Use a SetFit model to classify the filtered aspect span candidates.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_sm
- **SetFitABSA Aspect Model:** [joshuasundance/setfit-absa-all-MiniLM-L6-v2-laptops-aspect](https://huggingface.co/joshuasundance/setfit-absa-all-MiniLM-L6-v2-laptops-aspect)
- **SetFitABSA Polarity Model:** [joshuasundance/setfit-absa-all-mpnet-base-v2-laptops-polarity](https://huggingface.co/joshuasundance/setfit-absa-all-mpnet-base-v2-laptops-polarity)
- **Maximum Sequence Length:** 256 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [tomaarsen/setfit-absa-semeval-laptops](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-laptops) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label     | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|:----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aspect    | <ul><li>'cord:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'battery life:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'service center:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li></ul> |
| no aspect | <ul><li>'night:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'skip:I charge it at night and skip taking the cord with me because of the good battery life.'</li><li>'exchange:The tech guy then said the service center does not do 1-to-1 exchange and I have to direct my concern to the "sales" team, which is the retail shop which I bought my netbook from.'</li></ul>              |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8240   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "joshuasundance/setfit-absa-all-MiniLM-L6-v2-laptops-aspect",
    "joshuasundance/setfit-absa-all-mpnet-base-v2-laptops-polarity",
    spacy_model="en_core_web_sm",
)
# Run inference
preds = model("This laptop meets every expectation and Windows 7 is great!")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 2   | 21.1510 | 42  |

| Label     | Training Sample Count |
|:----------|:----------------------|
| no aspect | 119                   |
| aspect    | 126                   |

### Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch      | Step    | Training Loss | Validation Loss |
|:----------:|:-------:|:-------------:|:---------------:|
| 0.0042     | 1       | 0.3776        | -               |
| 0.2110     | 50      | 0.2644        | 0.2622          |
| 0.4219     | 100     | 0.2248        | 0.2437          |
| **0.6329** | **150** | **0.0059**    | **0.2238**      |
| 0.8439     | 200     | 0.0017        | 0.2326          |
| 1.0549     | 250     | 0.0012        | 0.2382          |
| 1.2658     | 300     | 0.0008        | 0.2455          |
| 1.4768     | 350     | 0.0006        | 0.2328          |
| 1.6878     | 400     | 0.0005        | 0.243           |

* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.7
- SetFit: 1.0.3
- Sentence Transformers: 2.3.0
- spaCy: 3.7.2
- Transformers: 4.37.2
- PyTorch: 2.1.2+cu118
- Datasets: 2.16.1
- Tokenizers: 0.15.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->