Upload 3 files
Browse files- satlas/run.py +18 -7
- satlas/utils.py +19 -2
satlas/run.py
CHANGED
@@ -11,12 +11,23 @@ dataset = opensr_test.load("naip")
|
|
11 |
lr_dataset, hr_dataset = dataset["L1C"], dataset["HRharm"]
|
12 |
|
13 |
# Predict a image
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
#
|
19 |
-
fig, ax = plt.subplots(1,
|
20 |
-
ax[0].imshow(lr.
|
21 |
-
ax[
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
plt.show()
|
|
|
|
11 |
lr_dataset, hr_dataset = dataset["L1C"], dataset["HRharm"]
|
12 |
|
13 |
# Predict a image
|
14 |
+
results = run_satlas(
|
15 |
+
model=model,
|
16 |
+
lr=lr_dataset[4],
|
17 |
+
hr=hr_dataset[4],
|
18 |
+
cropsize=32,
|
19 |
+
overlap=0
|
20 |
+
)
|
21 |
|
22 |
+
# Display the results
|
23 |
+
fig, ax = plt.subplots(1, 3, figsize=(10, 5))
|
24 |
+
ax[0].imshow(results["lr"].transpose(1, 2, 0)/10000)
|
25 |
+
ax[0].set_title("LR")
|
26 |
+
ax[0].axis("off")
|
27 |
+
ax[1].imshow(results["sr"].transpose(1, 2, 0)/10000)
|
28 |
+
ax[1].set_title("SR")
|
29 |
+
ax[1].axis("off")
|
30 |
+
ax[2].imshow(results["hr"].transpose(1, 2, 0) / 3000)
|
31 |
+
ax[2].set_title("HR")
|
32 |
plt.show()
|
33 |
+
|
satlas/utils.py
CHANGED
@@ -32,7 +32,17 @@ def load_satlas_sr(device: Union[str, torch.device] = "cuda") -> RRDBNet:
|
|
32 |
return model
|
33 |
|
34 |
|
35 |
-
def run_satlas(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Select the raster with the lowest resolution
|
37 |
tshp = lr.shape
|
38 |
|
@@ -73,4 +83,11 @@ def run_satlas(model, lr, cropsize: int = 32, overlap: int = 0):
|
|
73 |
sr_crop = model(crop[None])[0]
|
74 |
sr[:, x*4:(x+cropsize)*4, y*4:(y+cropsize)*4] = sr_crop
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return model
|
33 |
|
34 |
|
35 |
+
def run_satlas(
|
36 |
+
model: RRDBNet,
|
37 |
+
lr: torch.Tensor,
|
38 |
+
hr: torch.Tensor,
|
39 |
+
cropsize: int = 32,
|
40 |
+
overlap: int = 0,
|
41 |
+
device: Union[str, torch.device] = "cuda"
|
42 |
+
) -> torch.Tensor:
|
43 |
+
# Load the LR image
|
44 |
+
lr = torch.from_numpy(lr[[3, 2, 1]]/3558).float().to(device).clamp(0, 1)
|
45 |
+
|
46 |
# Select the raster with the lowest resolution
|
47 |
tshp = lr.shape
|
48 |
|
|
|
83 |
sr_crop = model(crop[None])[0]
|
84 |
sr[:, x*4:(x+cropsize)*4, y*4:(y+cropsize)*4] = sr_crop
|
85 |
|
86 |
+
# Save the result
|
87 |
+
results = {
|
88 |
+
"lr": (lr.cpu().numpy() * 10000).astype(np.uint16),
|
89 |
+
"sr": (sr.cpu().numpy() * 10000).astype(np.uint16),
|
90 |
+
"hr": hr[0:3]
|
91 |
+
}
|
92 |
+
|
93 |
+
return results
|