Upload 2 files
Browse files- superimage/run.py +31 -0
- superimage/utils.py +50 -0
superimage/run.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import opensr_test
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from utils import create_superimage_model, run_superimage
|
4 |
+
|
5 |
+
|
6 |
+
# Load the model
|
7 |
+
model = create_superimage_model(device="cuda")
|
8 |
+
|
9 |
+
# Load the dataset
|
10 |
+
dataset = opensr_test.load("naip")
|
11 |
+
lr_dataset, hr_dataset = dataset["L2A"], dataset["HRharm"]
|
12 |
+
|
13 |
+
# Run the model
|
14 |
+
results = run_superimage(
|
15 |
+
model=model,
|
16 |
+
lr=lr_dataset[7][:,0:64, 0:64],
|
17 |
+
hr=hr_dataset[7][:,0:256, 0:256],
|
18 |
+
device="cuda"
|
19 |
+
)
|
20 |
+
|
21 |
+
# Display the results
|
22 |
+
fig, ax = plt.subplots(1, 3, figsize=(10, 5))
|
23 |
+
ax[0].imshow(results["lr"].transpose(1, 2, 0)/3000)
|
24 |
+
ax[0].set_title("LR")
|
25 |
+
ax[0].axis("off")
|
26 |
+
ax[1].imshow(results["sr"].transpose(1, 2, 0)/3000)
|
27 |
+
ax[1].set_title("SR")
|
28 |
+
ax[1].axis("off")
|
29 |
+
ax[2].imshow(results["hr"].transpose(1, 2, 0) / 3000)
|
30 |
+
ax[2].set_title("HR")
|
31 |
+
plt.show()
|
superimage/utils.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from super_image import HanModel
|
4 |
+
from typing import Union
|
5 |
+
|
6 |
+
def create_superimage_model(
|
7 |
+
device: Union[str, torch.device] = "cuda"
|
8 |
+
) -> HanModel:
|
9 |
+
""" Create the super image model
|
10 |
+
|
11 |
+
Returns:
|
12 |
+
HanModel: The super image model
|
13 |
+
"""
|
14 |
+
return HanModel.from_pretrained('eugenesiow/han', scale=4).to(device)
|
15 |
+
|
16 |
+
|
17 |
+
def run_superimage(
|
18 |
+
model: HanModel,
|
19 |
+
lr: np.ndarray,
|
20 |
+
hr: np.ndarray,
|
21 |
+
device: Union[str, torch.device] = "cuda"
|
22 |
+
):
|
23 |
+
""" Run the super image model
|
24 |
+
|
25 |
+
Args:
|
26 |
+
model (HanModel): The super image model
|
27 |
+
lr (np.ndarray): The low resolution image
|
28 |
+
hr (np.ndarray): The high resolution image
|
29 |
+
device (Union[str, torch.device], optional): The device to run the model on. Defaults to "cuda".
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
dict: The results
|
33 |
+
"""
|
34 |
+
# Convert the images to tensors
|
35 |
+
lr_tensor = (torch.from_numpy(lr[[3, 2, 1]]).to(device) / 2000).float()
|
36 |
+
|
37 |
+
# Run the model
|
38 |
+
with torch.no_grad():
|
39 |
+
sr_tensor = model(lr_tensor[None])
|
40 |
+
|
41 |
+
# Convert the tensors to numpy arrays
|
42 |
+
lr = (lr_tensor.cpu().numpy() * 2000).astype(np.uint16)
|
43 |
+
sr = (sr_tensor.cpu().numpy() * 2000).astype(np.uint16)
|
44 |
+
|
45 |
+
# Return the results
|
46 |
+
return {
|
47 |
+
"lr": lr.squeeze(),
|
48 |
+
"hr": hr[0:3].squeeze(),
|
49 |
+
"sr": sr.squeeze()
|
50 |
+
}
|