--- language: - he base_model: - ivrit-ai/whisper-large-v3-turbo-d4-p1-take2 pipeline_tag: automatic-speech-recognition tags: - faster-whisper --- # ivrit-faster-whisper-turbo-d4 This model is a conversion of the **ivrit-ai/whisper-large-v3-turbo-d4-p1-take2** model to the [**Faster-Whisper**](https://github.com/guillaumekln/faster-whisper) format, offering significantly faster inference times. ### Model Overview - **Base Model**: [ivrit-ai/whisper-large-v3-turbo-d4-p1-take2](https://huggingface.co/ivrit-ai/whisper-large-v3-turbo-d4-p1-take2) - **Converted to**: Faster-Whisper (for faster ASR with minimal performance loss) - **Language**: Hebrew (`he`) - **Quantization**: Float32 ### All credits go to **ivrit-ai** for developing the original Whisper model. ## How to Use the Model To use the model in your projects, follow the steps below to load and transcribe audio: ```python # Import the Faster Whisper module import faster_whisper # Load the model from Hugging Face model = faster_whisper.WhisperModel("israelisraeli/ivrit-faster-whisper-turbo-d4", device="cuda") # Transcribe the audio file to JSON segs, _ = model.transcribe("AUDIOFILE_efiTheTigger.mp3", language="he") # Format the output into a list of dictionaries with timestamps and text transcribed_segments_with_timestamps = [ {"start": s.start, "end": s.end, "text": s.text} for s in segs ] import json # Save the result to a JSON file with open("transcribed_segments_with_timestamps.json", "w", encoding="utf-8") as json_file: json.dump( transcribed_segments_with_timestamps, json_file, ensure_ascii=False, indent=4 ) print("Transcription saved to transcribed_segments_with_timestamps.json") ``` ## Conversion process ### Tokenizer Conversion ```python from transformers import AutoTokenizer # Load the tokenizer from the original Whisper model files tokenizer_directory = "path_to_whisper_model_files" tokenizer = AutoTokenizer.from_pretrained(tokenizer_directory) # Save the tokenizer into a single JSON file tokenizer.save_pretrained("path_to_save_directory", legacy_format=False) ``` ### Model Conversion to Faster-Whisper To convert the original [ivrit-ai/whisper-large-v3-turbo-d4-p1-take2](https://huggingface.co/ivrit-ai/whisper-large-v3-turbo-d4-p1-take2) model to the Faster-Whisper format, i used the CTranslate2 library. The following command was used for the conversion: ```bash ct2-transformers-converter \ --model ./whisper-large-v3-turbo-d4-p1-take2 \ --output_dir ./ivrit-faster-whisper-turbo-d4 \ --copy_files tokenizer.json preprocessor_config.json \ ```