--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - type: precision value: 0.9227969559942649 name: Precision - type: recall value: 0.9360107394563151 name: Recall - type: f1 value: 0.9293568810396535 name: F1 - type: accuracy value: 0.9833034139831922 name: Accuracy - task: type: token-classification name: Token Classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test metrics: - type: accuracy value: 0.973914094330502 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmJmZTE4OGY4MmNlZGJmMzJmZGYxMjQ5Nzc4MzEzODU2YjQwZWQ1ZDU1N2NmN2M2YjliZTQ3MmZhZjA2OGYwNCIsInZlcnNpb24iOjF9.w_Y03WPSKDkQnyC3FFw4qtffWqg4ZbjJ6zyIEl6dKTCf6rgrjbhJKIb3MsOIw34Ydb-M3TTpV2Ak43bsaXQ-DA - type: precision value: 0.9791360147483736 name: Precision verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODY2YjUwYTk5NGE1YWJlYjMyM2MyZGU4ZjE2MTM1ZGZiZDg4MTFjMGRkNzI5ODQ0ZTBlMmVkYzkyODIwYjgxMCIsInZlcnNpb24iOjF9.nChULEs9H0UFNtlM4m_kuBm9Ch981r7V4Axo1yvPIoPAPd6GyCopO615pyjd7bwXxYy4_nQpc1cBI5iY0OkHDA - type: recall value: 0.9793269742207723 name: Recall verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmI0MzRkZjY4M2Y5YWE1OTdjNDNlN2NmNDVhMmEwODI2MmM1ZTViNDc1NzllZDdkOWZiZWVkMjQxNGM0YTQyZCIsInZlcnNpb24iOjF9.jS1iBDeJK7_QB7kanNxyfAnZm0HdS_EqBPjBCVhYCPEMRLnuXeuztdz_G4MczcZV6F2RoDjLJzxJdbuzKN1eCw - type: f1 value: 0.9792314851748437 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmQ1MjM1ZDU2YzlmY2JkYTU0MjU5MTIzNDc3MDZmNzJjZmNkNzI1ZDY0MWFmYjBhZjI5NTg3ZjY0NGFlYWZmOSIsInZlcnNpb24iOjF9.BtgL5tCizs8iH7LHOfl1aRfaW0Nxfx6kWldUmWbjDk_McZrK6BRxFnHDscVZ1wUa11rX1IjgC1_DOcMNBXq6BQ - type: loss value: 0.10710480064153671 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWU0MDY3OTAxZTUyNmNlMjA1MDdiNTg4ZmI4MTJmMDYyMTY4MjZjYzNkODFlMDY1M2RjMjMyNDkzNzBkMmQzNiIsInZlcnNpb24iOjF9.dU5jfYPYWXkiebzZ_c4HTxui6RoYYfAdShcSzXBY0v-pB9FEwm_-8vHOtT-rK_s_EwifpPobRfdpXL2Y7C33CA --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Precision: 0.9228 - Recall: 0.9360 - F1: 0.9294 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2433 | 1.0 | 878 | 0.0732 | 0.9079 | 0.9190 | 0.9134 | 0.9795 | | 0.0553 | 2.0 | 1756 | 0.0599 | 0.9170 | 0.9333 | 0.9251 | 0.9826 | | 0.0305 | 3.0 | 2634 | 0.0614 | 0.9228 | 0.9360 | 0.9294 | 0.9833 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6