First commit to the Deep RL course
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- smallastronaut.zip +3 -0
- smallastronaut/_stable_baselines3_version +1 -0
- smallastronaut/data +95 -0
- smallastronaut/policy.optimizer.pth +3 -0
- smallastronaut/policy.pth +3 -0
- smallastronaut/pytorch_variables.pth +3 -0
- smallastronaut/system_info.txt +7 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: ppo_mlp
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 243.81 +/- 16.20
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **ppo_mlp** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **ppo_mlp** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2f8f520c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2f8f520ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2f8f520d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2f8f520dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f2f8f520e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f2f8f520ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2f8f520f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2f8f523040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2f8f5230d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2f8f523160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2f8f5231f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2f8f523280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2f95f11c60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673709622517107148, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOfAbxzg/A+PbTLvGawmr6wna07fv5IPQAAAAAAAAAAAHfovZYXkj4ac7k80ByHvla2MLuGJKc8AAAAAAAAAAAa0sk9h5+UP2pndT0+a5W+fw3lPc5OFT0AAAAAAAAAAHNUAb4lTko+AsQxPi2g9b0czio9Kag8PAAAAAAAAAAAM2MPPBgplD57NNG8THBcvjsCy7oFomO9AAAAAAAAAAC9+XK+SK3fPumJPT4dozy+faYLvP1Q9DwAAAAAAAAAAGYOD7xk44A9zU7VuypYpL1YNJi87uAgPQAAAAAAAAAA5geLPUjnn7qQezyzDvoBMGdeNTouYdEzAACAPwAAgD8zD/28caJzu6ERqj1qlYK9VWCKvKJ8V74AAIA/AACAP42pHL4uysU+0uWuPSkpYr6f8ee8MuBnugAAAAAAAAAAZkSBPdU1Zz+s3Ay+b0ezvtzesj0eLcm9AAAAAAAAAAAm7ow9jFMCPjc1Sr5rGpO+jcACvaaYAL0AAAAAAAAAAI2CS74zrm0/0Ptavpv33r7Y60y+Z7C7PQAAAAAAAAAADUmavZuFmz95Z6W9Np/fvhL8Mju+JDi9AAAAAAAAAAAD3VK+9Dj6vGKfcLzBwxK7zEhcPnUJ3DsAAIA/AACAP5Op3b6b+Ww/Z76ZvgGTA7/iQrm+6o/jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Zyf4vgPcUCUhpRSlIwBbJRNewGMAXSUR0CRgjaz/p+udX2UKGgGaAloD0MIp6/naxbocECUhpRSlGgVTWgBaBZHQJGCPJLdvbZ1fZQoaAZoCWgPQwjJIHcR5hBxQJSGlFKUaBVNfwFoFkdAkYLOFtbcGnV9lChoBmgJaA9DCMfUXdnFGHFAlIaUUpRoFU1YAWgWR0CRgzk8A7xNdX2UKGgGaAloD0MIKlJhbCFkbECUhpRSlGgVTVYBaBZHQJGFGOT7l7t1fZQoaAZoCWgPQwjWrDO+77JyQJSGlFKUaBVNJwFoFkdAkYZi5I6KcnV9lChoBmgJaA9DCLEVNC2x1EBAlIaUUpRoFUvxaBZHQJGGbHWBjF11fZQoaAZoCWgPQwiXGqGfqQNvQJSGlFKUaBVNNgFoFkdAkYiw4CIUJ3V9lChoBmgJaA9DCG9iSE6mCnJAlIaUUpRoFU02AWgWR0CRibPzFuNxdX2UKGgGaAloD0MINPJ5xdNUb0CUhpRSlGgVTSYBaBZHQJGJtFKCg9N1fZQoaAZoCWgPQwjTakjcYzVyQJSGlFKUaBVNZQFoFkdAkYog2/BWP3V9lChoBmgJaA9DCAsL7gc8qXFAlIaUUpRoFU1jAWgWR0CRi5hY/3WXdX2UKGgGaAloD0MIAfxTqkTDbkCUhpRSlGgVTaIBaBZHQJGLpHTZxrB1fZQoaAZoCWgPQwiC/kKPmJ1wQJSGlFKUaBVNFgFoFkdAkYyQuRLbpXV9lChoBmgJaA9DCGjO+pRjNXBAlIaUUpRoFU0xAWgWR0CRjLesPrfMdX2UKGgGaAloD0MIVdy4xbzCcUCUhpRSlGgVTUUBaBZHQJGM2ya/h2p1fZQoaAZoCWgPQwjcEU4LHnFxQJSGlFKUaBVNNgFoFkdAkYzsE7nxKHV9lChoBmgJaA9DCMto5PMKBnBAlIaUUpRoFU08AWgWR0CRjlULDye7dX2UKGgGaAloD0MI9FMcB177bUCUhpRSlGgVTfYBaBZHQJGO9fD1oQF1fZQoaAZoCWgPQwg095DwPehuQJSGlFKUaBVNSAFoFkdAkZDhcVxjrnV9lChoBmgJaA9DCEmgwaYOjnBAlIaUUpRoFU1DAWgWR0CRkinDiwSrdX2UKGgGaAloD0MISyNm9vn4b0CUhpRSlGgVTVkBaBZHQJGS+05U96l1fZQoaAZoCWgPQwiXOV0Wkx5xQJSGlFKUaBVNHAFoFkdAkZPguVX3g3V9lChoBmgJaA9DCNDVVuwvs25AlIaUUpRoFU01AWgWR0CRlU1cMVk+dX2UKGgGaAloD0MIxk/j3vzpb0CUhpRSlGgVTXQBaBZHQJGWj47A+IN1fZQoaAZoCWgPQwhJY7SOqmFzQJSGlFKUaBVNYwFoFkdAkZbcIVuaW3V9lChoBmgJaA9DCCdqaW4FdWxAlIaUUpRoFU02AWgWR0CRlwI42jwhdX2UKGgGaAloD0MIq8yU1l+cb0CUhpRSlGgVTUABaBZHQJGXWS5iExt1fZQoaAZoCWgPQwgR/kXQGEpwQJSGlFKUaBVNQAFoFkdAkZhME7nxKHV9lChoBmgJaA9DCDi8ICI1hGxAlIaUUpRoFU09AWgWR0CRmFa1kUbldX2UKGgGaAloD0MIPsqIC0A2bUCUhpRSlGgVTVMBaBZHQJGZOeXiR4h1fZQoaAZoCWgPQwghBORLqNBvQJSGlFKUaBVNOQFoFkdAkZpgkX1rZnV9lChoBmgJaA9DCBKEK6BQpHFAlIaUUpRoFU2KAWgWR0CRmun0kGA1dX2UKGgGaAloD0MISbw8nSvsb0CUhpRSlGgVTW0BaBZHQJGbcj2SMcZ1fZQoaAZoCWgPQwgvi4nNx204QJSGlFKUaBVL9WgWR0CRm82ECeVcdX2UKGgGaAloD0MI9yLajilKckCUhpRSlGgVTeMCaBZHQJGb3Bk7Oml1fZQoaAZoCWgPQwg2O1J952xuQJSGlFKUaBVNNgFoFkdAkZwSbhFVk3V9lChoBmgJaA9DCGXCL/VzdGxAlIaUUpRoFU0hAWgWR0CRnaePJaJRdX2UKGgGaAloD0MIZjIcz2c8RkCUhpRSlGgVS+JoFkdAkZ4DcIqsl3V9lChoBmgJaA9DCLh2oiTk6nBAlIaUUpRoFU09AWgWR0CRn+sK9f1IdX2UKGgGaAloD0MITN4AM18fakCUhpRSlGgVTaoBaBZHQJGhEHhS9/V1fZQoaAZoCWgPQwj+17lps0RvQJSGlFKUaBVNSAFoFkdAkaHNJjDsMXV9lChoBmgJaA9DCGWp9X6jDHBAlIaUUpRoFU1LAWgWR0CRomvwEyLydX2UKGgGaAloD0MILubnhib+bkCUhpRSlGgVTWIBaBZHQJGiiz3RG+d1fZQoaAZoCWgPQwi/tn76z05uQJSGlFKUaBVNRAFoFkdAkaMbsKLKm3V9lChoBmgJaA9DCBgGLLnK33BAlIaUUpRoFU1JAWgWR0CRo0/k/8l5dX2UKGgGaAloD0MIKII4DycWb0CUhpRSlGgVTVABaBZHQJGkcvpQk5Z1fZQoaAZoCWgPQwiY4NQHEoFtQJSGlFKUaBVNRQFoFkdAkbeuQdS2pnV9lChoBmgJaA9DCHV4COOn9nFAlIaUUpRoFU04AWgWR0CRt8dSl3yJdX2UKGgGaAloD0MICjGXVG17b0CUhpRSlGgVTT0BaBZHQJG4bf/FR511fZQoaAZoCWgPQwicNXhflZZtQJSGlFKUaBVNNQFoFkdAkbiNZzPrwHV9lChoBmgJaA9DCKpGrwYoRW9AlIaUUpRoFU1HAWgWR0CRuRsSkCV9dX2UKGgGaAloD0MIaMwk6gVEb0CUhpRSlGgVTToBaBZHQJG6uL9/BnB1fZQoaAZoCWgPQwjRsYNK3GlvQJSGlFKUaBVNNgFoFkdAkbr2mHgxanV9lChoBmgJaA9DCMeePZdpk3BAlIaUUpRoFU2ZAWgWR0CRu9/6O5rhdX2UKGgGaAloD0MI0o+GU+Y0cECUhpRSlGgVTScBaBZHQJG8IB6rvLJ1fZQoaAZoCWgPQwgxmL9CZoFuQJSGlFKUaBVNKwFoFkdAkb0gqd6LO3V9lChoBmgJaA9DCPWB5J1DJnJAlIaUUpRoFU0iAWgWR0CRvgfzBhx6dX2UKGgGaAloD0MIAfp9/6aZckCUhpRSlGgVTT4BaBZHQJG+ffyf+S91fZQoaAZoCWgPQwh9Bz9xwIpxQJSGlFKUaBVNLgFoFkdAkb6ZssQNC3V9lChoBmgJaA9DCCECDqHKgWtAlIaUUpRoFU0fAWgWR0CRvs4lyBCldX2UKGgGaAloD0MILQsm/iiLcECUhpRSlGgVTUcBaBZHQJG/5/SYw7F1fZQoaAZoCWgPQwh+xoUDITFyQJSGlFKUaBVNBgFoFkdAkcDQYk3S8nV9lChoBmgJaA9DCM+hDFWxonBAlIaUUpRoFU0cAWgWR0CRwNFwDNhWdX2UKGgGaAloD0MIG7gDdYpncUCUhpRSlGgVTT0BaBZHQJHA8PVd5Y51fZQoaAZoCWgPQwggCft2khZwQJSGlFKUaBVNDwFoFkdAkcEvo/zJ63V9lChoBmgJaA9DCMdmR6qvG3BAlIaUUpRoFU1LAWgWR0CRwgp++dsjdX2UKGgGaAloD0MI9s/TgIGhcUCUhpRSlGgVTSgBaBZHQJHCY+6iCat1fZQoaAZoCWgPQwjrAfOQKXdBQJSGlFKUaBVL22gWR0CRwun3+MqCdX2UKGgGaAloD0MIbO7of7kFc0CUhpRSlGgVTRABaBZHQJHELgdfb9J1fZQoaAZoCWgPQwjfG0MA8IhsQJSGlFKUaBVNSAFoFkdAkcUHrhR64XV9lChoBmgJaA9DCDUmxFyStHFAlIaUUpRoFU1XAWgWR0CRxULr5ZbIdX2UKGgGaAloD0MIJ6PKMG7Wb0CUhpRSlGgVTSIBaBZHQJHG1SJj2Bd1fZQoaAZoCWgPQwjACBozCblwQJSGlFKUaBVNRQFoFkdAkcc7Dye7MHV9lChoBmgJaA9DCF5NnrIawW5AlIaUUpRoFU0kAWgWR0CRx2fthNM5dX2UKGgGaAloD0MIM2spIO2Ya0CUhpRSlGgVTSIBaBZHQJHHsDklu3t1fZQoaAZoCWgPQwj191J40AJSQJSGlFKUaBVL9WgWR0CRyLNTLns+dX2UKGgGaAloD0MIA137AjoecECUhpRSlGgVTUkBaBZHQJHI00ZWJad1fZQoaAZoCWgPQwhTI/QztStxQJSGlFKUaBVNCgFoFkdAkcj4I0IkaHV9lChoBmgJaA9DCGVVhJvMlXFAlIaUUpRoFU03AWgWR0CRyYgssg+ydX2UKGgGaAloD0MITIxl+iUncECUhpRSlGgVTVMBaBZHQJHLfRw6ySp1fZQoaAZoCWgPQwjytPzAVepBQJSGlFKUaBVL42gWR0CRy8SVnmJWdX2UKGgGaAloD0MIzm4tk2HEbkCUhpRSlGgVTWYBaBZHQJHMBh9b5dp1fZQoaAZoCWgPQwiYaftX1r5vQJSGlFKUaBVNGgFoFkdAkcwdfb9IgHV9lChoBmgJaA9DCLuaPGU1N2xAlIaUUpRoFU1NAWgWR0CRzPd4VymzdX2UKGgGaAloD0MI4bN1cDCFcECUhpRSlGgVTXEBaBZHQJHNm0Re1KJ1fZQoaAZoCWgPQwiwPbMkwKlwQJSGlFKUaBVNOAFoFkdAkc81nyup0nV9lChoBmgJaA9DCCOgwhEky3FAlIaUUpRoFU0gAWgWR0CR0GlFc6eYdX2UKGgGaAloD0MI5MCr5Y43cECUhpRSlGgVTVQBaBZHQJHQiPS2H+J1fZQoaAZoCWgPQwgPm8jMBfdsQJSGlFKUaBVNLAFoFkdAkdEpTVDrq3V9lChoBmgJaA9DCG4UWWvolHBAlIaUUpRoFU01AWgWR0CR0eHp8neBdX2UKGgGaAloD0MIkuf6PtwsckCUhpRSlGgVTUIBaBZHQJHSEOskpqh1fZQoaAZoCWgPQwik/+VatMtuQJSGlFKUaBVNQQFoFkdAkdNrpNbkfnV9lChoBmgJaA9DCADFyJK59nBAlIaUUpRoFU0uAWgWR0CR05IxxkupdX2UKGgGaAloD0MInkMZqiINckCUhpRSlGgVTUQBaBZHQJHTs+fRNRF1fZQoaAZoCWgPQwhQyM7b2EBuQJSGlFKUaBVNZgFoFkdAkdSVfNRm9XV9lChoBmgJaA9DCEGC4scYJnBAlIaUUpRoFU0eAWgWR0CR1ZiiZfD2dX2UKGgGaAloD0MIb37DRIORcECUhpRSlGgVTTQBaBZHQJHV+7e2uxN1fZQoaAZoCWgPQwiNJEG4guxvQJSGlFKUaBVNMQFoFkdAkdYc2eg+QnV9lChoBmgJaA9DCPgb7bihknJAlIaUUpRoFU1EAWgWR0CR1joOQQtjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (257 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 243.81167508455943, "std_reward": 16.20259550741134, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-14T15:42:49.902352"}
|
smallastronaut.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3918de880678dcb56fc9dc1e2828b8d0e39201e0628a090e32aef539cab26f6c
|
3 |
+
size 147416
|
smallastronaut/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
smallastronaut/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2f8f520c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2f8f520ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2f8f520d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2f8f520dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2f8f520e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2f8f520ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2f8f520f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2f8f523040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2f8f5230d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2f8f523160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2f8f5231f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2f8f523280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f2f95f11c60>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1673709622517107148,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOfAbxzg/A+PbTLvGawmr6wna07fv5IPQAAAAAAAAAAAHfovZYXkj4ac7k80ByHvla2MLuGJKc8AAAAAAAAAAAa0sk9h5+UP2pndT0+a5W+fw3lPc5OFT0AAAAAAAAAAHNUAb4lTko+AsQxPi2g9b0czio9Kag8PAAAAAAAAAAAM2MPPBgplD57NNG8THBcvjsCy7oFomO9AAAAAAAAAAC9+XK+SK3fPumJPT4dozy+faYLvP1Q9DwAAAAAAAAAAGYOD7xk44A9zU7VuypYpL1YNJi87uAgPQAAAAAAAAAA5geLPUjnn7qQezyzDvoBMGdeNTouYdEzAACAPwAAgD8zD/28caJzu6ERqj1qlYK9VWCKvKJ8V74AAIA/AACAP42pHL4uysU+0uWuPSkpYr6f8ee8MuBnugAAAAAAAAAAZkSBPdU1Zz+s3Ay+b0ezvtzesj0eLcm9AAAAAAAAAAAm7ow9jFMCPjc1Sr5rGpO+jcACvaaYAL0AAAAAAAAAAI2CS74zrm0/0Ptavpv33r7Y60y+Z7C7PQAAAAAAAAAADUmavZuFmz95Z6W9Np/fvhL8Mju+JDi9AAAAAAAAAAAD3VK+9Dj6vGKfcLzBwxK7zEhcPnUJ3DsAAIA/AACAP5Op3b6b+Ww/Z76ZvgGTA7/iQrm+6o/jPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Zyf4vgPcUCUhpRSlIwBbJRNewGMAXSUR0CRgjaz/p+udX2UKGgGaAloD0MIp6/naxbocECUhpRSlGgVTWgBaBZHQJGCPJLdvbZ1fZQoaAZoCWgPQwjJIHcR5hBxQJSGlFKUaBVNfwFoFkdAkYLOFtbcGnV9lChoBmgJaA9DCMfUXdnFGHFAlIaUUpRoFU1YAWgWR0CRgzk8A7xNdX2UKGgGaAloD0MIKlJhbCFkbECUhpRSlGgVTVYBaBZHQJGFGOT7l7t1fZQoaAZoCWgPQwjWrDO+77JyQJSGlFKUaBVNJwFoFkdAkYZi5I6KcnV9lChoBmgJaA9DCLEVNC2x1EBAlIaUUpRoFUvxaBZHQJGGbHWBjF11fZQoaAZoCWgPQwiXGqGfqQNvQJSGlFKUaBVNNgFoFkdAkYiw4CIUJ3V9lChoBmgJaA9DCG9iSE6mCnJAlIaUUpRoFU02AWgWR0CRibPzFuNxdX2UKGgGaAloD0MINPJ5xdNUb0CUhpRSlGgVTSYBaBZHQJGJtFKCg9N1fZQoaAZoCWgPQwjTakjcYzVyQJSGlFKUaBVNZQFoFkdAkYog2/BWP3V9lChoBmgJaA9DCAsL7gc8qXFAlIaUUpRoFU1jAWgWR0CRi5hY/3WXdX2UKGgGaAloD0MIAfxTqkTDbkCUhpRSlGgVTaIBaBZHQJGLpHTZxrB1fZQoaAZoCWgPQwiC/kKPmJ1wQJSGlFKUaBVNFgFoFkdAkYyQuRLbpXV9lChoBmgJaA9DCGjO+pRjNXBAlIaUUpRoFU0xAWgWR0CRjLesPrfMdX2UKGgGaAloD0MIVdy4xbzCcUCUhpRSlGgVTUUBaBZHQJGM2ya/h2p1fZQoaAZoCWgPQwjcEU4LHnFxQJSGlFKUaBVNNgFoFkdAkYzsE7nxKHV9lChoBmgJaA9DCMto5PMKBnBAlIaUUpRoFU08AWgWR0CRjlULDye7dX2UKGgGaAloD0MI9FMcB177bUCUhpRSlGgVTfYBaBZHQJGO9fD1oQF1fZQoaAZoCWgPQwg095DwPehuQJSGlFKUaBVNSAFoFkdAkZDhcVxjrnV9lChoBmgJaA9DCEmgwaYOjnBAlIaUUpRoFU1DAWgWR0CRkinDiwSrdX2UKGgGaAloD0MISyNm9vn4b0CUhpRSlGgVTVkBaBZHQJGS+05U96l1fZQoaAZoCWgPQwiXOV0Wkx5xQJSGlFKUaBVNHAFoFkdAkZPguVX3g3V9lChoBmgJaA9DCNDVVuwvs25AlIaUUpRoFU01AWgWR0CRlU1cMVk+dX2UKGgGaAloD0MIxk/j3vzpb0CUhpRSlGgVTXQBaBZHQJGWj47A+IN1fZQoaAZoCWgPQwhJY7SOqmFzQJSGlFKUaBVNYwFoFkdAkZbcIVuaW3V9lChoBmgJaA9DCCdqaW4FdWxAlIaUUpRoFU02AWgWR0CRlwI42jwhdX2UKGgGaAloD0MIq8yU1l+cb0CUhpRSlGgVTUABaBZHQJGXWS5iExt1fZQoaAZoCWgPQwgR/kXQGEpwQJSGlFKUaBVNQAFoFkdAkZhME7nxKHV9lChoBmgJaA9DCDi8ICI1hGxAlIaUUpRoFU09AWgWR0CRmFa1kUbldX2UKGgGaAloD0MIPsqIC0A2bUCUhpRSlGgVTVMBaBZHQJGZOeXiR4h1fZQoaAZoCWgPQwghBORLqNBvQJSGlFKUaBVNOQFoFkdAkZpgkX1rZnV9lChoBmgJaA9DCBKEK6BQpHFAlIaUUpRoFU2KAWgWR0CRmun0kGA1dX2UKGgGaAloD0MISbw8nSvsb0CUhpRSlGgVTW0BaBZHQJGbcj2SMcZ1fZQoaAZoCWgPQwgvi4nNx204QJSGlFKUaBVL9WgWR0CRm82ECeVcdX2UKGgGaAloD0MI9yLajilKckCUhpRSlGgVTeMCaBZHQJGb3Bk7Oml1fZQoaAZoCWgPQwg2O1J952xuQJSGlFKUaBVNNgFoFkdAkZwSbhFVk3V9lChoBmgJaA9DCGXCL/VzdGxAlIaUUpRoFU0hAWgWR0CRnaePJaJRdX2UKGgGaAloD0MIZjIcz2c8RkCUhpRSlGgVS+JoFkdAkZ4DcIqsl3V9lChoBmgJaA9DCLh2oiTk6nBAlIaUUpRoFU09AWgWR0CRn+sK9f1IdX2UKGgGaAloD0MITN4AM18fakCUhpRSlGgVTaoBaBZHQJGhEHhS9/V1fZQoaAZoCWgPQwj+17lps0RvQJSGlFKUaBVNSAFoFkdAkaHNJjDsMXV9lChoBmgJaA9DCGWp9X6jDHBAlIaUUpRoFU1LAWgWR0CRomvwEyLydX2UKGgGaAloD0MILubnhib+bkCUhpRSlGgVTWIBaBZHQJGiiz3RG+d1fZQoaAZoCWgPQwi/tn76z05uQJSGlFKUaBVNRAFoFkdAkaMbsKLKm3V9lChoBmgJaA9DCBgGLLnK33BAlIaUUpRoFU1JAWgWR0CRo0/k/8l5dX2UKGgGaAloD0MIKII4DycWb0CUhpRSlGgVTVABaBZHQJGkcvpQk5Z1fZQoaAZoCWgPQwiY4NQHEoFtQJSGlFKUaBVNRQFoFkdAkbeuQdS2pnV9lChoBmgJaA9DCHV4COOn9nFAlIaUUpRoFU04AWgWR0CRt8dSl3yJdX2UKGgGaAloD0MICjGXVG17b0CUhpRSlGgVTT0BaBZHQJG4bf/FR511fZQoaAZoCWgPQwicNXhflZZtQJSGlFKUaBVNNQFoFkdAkbiNZzPrwHV9lChoBmgJaA9DCKpGrwYoRW9AlIaUUpRoFU1HAWgWR0CRuRsSkCV9dX2UKGgGaAloD0MIaMwk6gVEb0CUhpRSlGgVTToBaBZHQJG6uL9/BnB1fZQoaAZoCWgPQwjRsYNK3GlvQJSGlFKUaBVNNgFoFkdAkbr2mHgxanV9lChoBmgJaA9DCMeePZdpk3BAlIaUUpRoFU2ZAWgWR0CRu9/6O5rhdX2UKGgGaAloD0MI0o+GU+Y0cECUhpRSlGgVTScBaBZHQJG8IB6rvLJ1fZQoaAZoCWgPQwgxmL9CZoFuQJSGlFKUaBVNKwFoFkdAkb0gqd6LO3V9lChoBmgJaA9DCPWB5J1DJnJAlIaUUpRoFU0iAWgWR0CRvgfzBhx6dX2UKGgGaAloD0MIAfp9/6aZckCUhpRSlGgVTT4BaBZHQJG+ffyf+S91fZQoaAZoCWgPQwh9Bz9xwIpxQJSGlFKUaBVNLgFoFkdAkb6ZssQNC3V9lChoBmgJaA9DCCECDqHKgWtAlIaUUpRoFU0fAWgWR0CRvs4lyBCldX2UKGgGaAloD0MILQsm/iiLcECUhpRSlGgVTUcBaBZHQJG/5/SYw7F1fZQoaAZoCWgPQwh+xoUDITFyQJSGlFKUaBVNBgFoFkdAkcDQYk3S8nV9lChoBmgJaA9DCM+hDFWxonBAlIaUUpRoFU0cAWgWR0CRwNFwDNhWdX2UKGgGaAloD0MIG7gDdYpncUCUhpRSlGgVTT0BaBZHQJHA8PVd5Y51fZQoaAZoCWgPQwggCft2khZwQJSGlFKUaBVNDwFoFkdAkcEvo/zJ63V9lChoBmgJaA9DCMdmR6qvG3BAlIaUUpRoFU1LAWgWR0CRwgp++dsjdX2UKGgGaAloD0MI9s/TgIGhcUCUhpRSlGgVTSgBaBZHQJHCY+6iCat1fZQoaAZoCWgPQwjrAfOQKXdBQJSGlFKUaBVL22gWR0CRwun3+MqCdX2UKGgGaAloD0MIbO7of7kFc0CUhpRSlGgVTRABaBZHQJHELgdfb9J1fZQoaAZoCWgPQwjfG0MA8IhsQJSGlFKUaBVNSAFoFkdAkcUHrhR64XV9lChoBmgJaA9DCDUmxFyStHFAlIaUUpRoFU1XAWgWR0CRxULr5ZbIdX2UKGgGaAloD0MIJ6PKMG7Wb0CUhpRSlGgVTSIBaBZHQJHG1SJj2Bd1fZQoaAZoCWgPQwjACBozCblwQJSGlFKUaBVNRQFoFkdAkcc7Dye7MHV9lChoBmgJaA9DCF5NnrIawW5AlIaUUpRoFU0kAWgWR0CRx2fthNM5dX2UKGgGaAloD0MIM2spIO2Ya0CUhpRSlGgVTSIBaBZHQJHHsDklu3t1fZQoaAZoCWgPQwj191J40AJSQJSGlFKUaBVL9WgWR0CRyLNTLns+dX2UKGgGaAloD0MIA137AjoecECUhpRSlGgVTUkBaBZHQJHI00ZWJad1fZQoaAZoCWgPQwhTI/QztStxQJSGlFKUaBVNCgFoFkdAkcj4I0IkaHV9lChoBmgJaA9DCGVVhJvMlXFAlIaUUpRoFU03AWgWR0CRyYgssg+ydX2UKGgGaAloD0MITIxl+iUncECUhpRSlGgVTVMBaBZHQJHLfRw6ySp1fZQoaAZoCWgPQwjytPzAVepBQJSGlFKUaBVL42gWR0CRy8SVnmJWdX2UKGgGaAloD0MIzm4tk2HEbkCUhpRSlGgVTWYBaBZHQJHMBh9b5dp1fZQoaAZoCWgPQwiYaftX1r5vQJSGlFKUaBVNGgFoFkdAkcwdfb9IgHV9lChoBmgJaA9DCLuaPGU1N2xAlIaUUpRoFU1NAWgWR0CRzPd4VymzdX2UKGgGaAloD0MI4bN1cDCFcECUhpRSlGgVTXEBaBZHQJHNm0Re1KJ1fZQoaAZoCWgPQwiwPbMkwKlwQJSGlFKUaBVNOAFoFkdAkc81nyup0nV9lChoBmgJaA9DCCOgwhEky3FAlIaUUpRoFU0gAWgWR0CR0GlFc6eYdX2UKGgGaAloD0MI5MCr5Y43cECUhpRSlGgVTVQBaBZHQJHQiPS2H+J1fZQoaAZoCWgPQwgPm8jMBfdsQJSGlFKUaBVNLAFoFkdAkdEpTVDrq3V9lChoBmgJaA9DCG4UWWvolHBAlIaUUpRoFU01AWgWR0CR0eHp8neBdX2UKGgGaAloD0MIkuf6PtwsckCUhpRSlGgVTUIBaBZHQJHSEOskpqh1fZQoaAZoCWgPQwik/+VatMtuQJSGlFKUaBVNQQFoFkdAkdNrpNbkfnV9lChoBmgJaA9DCADFyJK59nBAlIaUUpRoFU0uAWgWR0CR05IxxkupdX2UKGgGaAloD0MInkMZqiINckCUhpRSlGgVTUQBaBZHQJHTs+fRNRF1fZQoaAZoCWgPQwhQyM7b2EBuQJSGlFKUaBVNZgFoFkdAkdSVfNRm9XV9lChoBmgJaA9DCEGC4scYJnBAlIaUUpRoFU0eAWgWR0CR1ZiiZfD2dX2UKGgGaAloD0MIb37DRIORcECUhpRSlGgVTTQBaBZHQJHV+7e2uxN1fZQoaAZoCWgPQwiNJEG4guxvQJSGlFKUaBVNMQFoFkdAkdYc2eg+QnV9lChoBmgJaA9DCPgb7bihknJAlIaUUpRoFU1EAWgWR0CR1joOQQtjdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
smallastronaut/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58693d5831fb3dee6fe5a3c8f0a251ab887eafd129bec2e4be141a8842d3e2ec
|
3 |
+
size 87929
|
smallastronaut/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c28707476ef724262f862b44451049b64a671da8ddb3b1fd7d8f77404b4c1d49
|
3 |
+
size 43393
|
smallastronaut/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
smallastronaut/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.0+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|