--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-fake-food results: [] --- # finetuned-fake-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3455 - Accuracy: 0.8541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5416 | 0.1264 | 100 | 0.5593 | 0.7081 | | 0.5299 | 0.2528 | 200 | 0.5342 | 0.7422 | | 0.5503 | 0.3793 | 300 | 0.4875 | 0.7717 | | 0.5561 | 0.5057 | 400 | 0.4622 | 0.7941 | | 0.5581 | 0.6321 | 500 | 0.5501 | 0.7457 | | 0.5845 | 0.7585 | 600 | 0.5088 | 0.7475 | | 0.5695 | 0.8850 | 700 | 0.4740 | 0.7860 | | 0.5406 | 1.0114 | 800 | 0.4856 | 0.7816 | | 0.5353 | 1.1378 | 900 | 0.4252 | 0.8156 | | 0.5345 | 1.2642 | 1000 | 0.5014 | 0.7762 | | 0.5105 | 1.3906 | 1100 | 0.4800 | 0.7860 | | 0.5266 | 1.5171 | 1200 | 0.4618 | 0.7959 | | 0.4709 | 1.6435 | 1300 | 0.3906 | 0.8281 | | 0.4624 | 1.7699 | 1400 | 0.4208 | 0.8129 | | 0.4677 | 1.8963 | 1500 | 0.4207 | 0.8174 | | 0.4478 | 2.0228 | 1600 | 0.3557 | 0.8478 | | 0.4451 | 2.1492 | 1700 | 0.3546 | 0.8442 | | 0.3796 | 2.2756 | 1800 | 0.3199 | 0.8720 | | 0.4358 | 2.4020 | 1900 | 0.3308 | 0.8603 | | 0.3373 | 2.5284 | 2000 | 0.3455 | 0.8541 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1