--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-fake-food results: - task: name: Image Classification type: image-classification dataset: name: indian_food_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8828996282527881 --- # finetuned-fake-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.3411 - Accuracy: 0.8829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5083 | 1.0 | 761 | 0.4226 | 0.8234 | | 0.5171 | 2.0 | 1522 | 0.4868 | 0.7825 | | 0.5042 | 3.0 | 2283 | 0.4948 | 0.7862 | | 0.282 | 4.0 | 3044 | 0.4702 | 0.8067 | | 0.8396 | 5.0 | 3805 | 0.4037 | 0.8290 | | 0.2213 | 6.0 | 4566 | 0.5371 | 0.7918 | | 0.636 | 7.0 | 5327 | 0.4830 | 0.8234 | | 0.5217 | 8.0 | 6088 | 0.3411 | 0.8829 | | 0.3796 | 9.0 | 6849 | 0.3674 | 0.8680 | | 0.286 | 10.0 | 7610 | 0.3989 | 0.8494 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1