File size: 1,760 Bytes
4336220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b56115
4336220
6b56115
 
4336220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b56115
 
 
 
 
4336220
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: facebook/hubert-large-ls960-ft
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: HuBERT Large Gender Classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# HuBERT Large Gender Classification

This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2366
- Accuracy: 0.9429

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.6175        | 0.0053 | 100  | 0.5800          | 0.7297   |
| 0.5478        | 0.0105 | 200  | 0.5069          | 0.7297   |
| 0.3762        | 0.0158 | 300  | 0.3544          | 0.7713   |
| 0.2103        | 0.0211 | 400  | 0.2486          | 0.9394   |
| 0.2034        | 0.0263 | 500  | 0.2366          | 0.9429   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1