File size: 1,794 Bytes
23d4d2a
 
 
 
e6e6952
23d4d2a
 
 
 
e6e6952
23d4d2a
 
 
 
 
 
 
 
 
 
e6e6952
23d4d2a
 
 
 
 
 
 
 
 
 
 
e6e6952
23d4d2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
language:
- ro
license: apache-2.0
base_model: iulik-pisik/horoscope_model_base
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- iulik-pisik/audio_vreme
metrics:
- wer
model-index:
- name: Horoscope Model Base - finetuned on weather
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Vreme ProTV
      type: iulik-pisik/audio_vreme
      config: default
      split: test
      args: 'config: ro, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 11.89889025893958
---

# Horoscope Model Base - finetuned on weather

This model is a fine-tuned version of [iulik-pisik/horoscope_model_base](https://huggingface.co/iulik-pisik/horoscope_model_base) on the Vreme ProTV dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2407
- Wer: 11.8989

## Model description

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0227        | 6.02  | 1000 | 0.1744          | 13.2758 |
| 0.001         | 12.05 | 2000 | 0.2217          | 12.0222 |
| 0.0004        | 18.07 | 3000 | 0.2365          | 11.9194 |
| 0.0003        | 24.1  | 4000 | 0.2407          | 11.8989 |


### Framework versions

- Transformers 4.39.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2