File size: 2,093 Bytes
9f7bc2f b4d0aa4 9f7bc2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language:
- ro
base_model: iulik-udrik/vreme_model_base
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- iulik-pisik/vreme_horoscop_base
metrics:
- wer
model-index:
- name: Vreme Model base - finetuned on horoscope
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Horoscop Neti Sandu
type: iulik-pisik/vreme_horoscop_base
config: default
split: None
args: 'config: ro, split: test'
metrics:
- name: Wer
type: wer
value: 17.66853248965685
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Vreme Model base - finetuned on horoscope
This model is a fine-tuned version of [iulik-pisik/vreme_model_base](https://huggingface.co/iulik-pisik/vreme_model_base) on the Horoscop Neti Sandu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3471
- Wer: 17.6685
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0111 | 9.71 | 1000 | 0.2991 | 18.3986 |
| 0.001 | 19.42 | 2000 | 0.3298 | 17.9119 |
| 0.0006 | 29.13 | 3000 | 0.3422 | 17.4252 |
| 0.0005 | 38.83 | 4000 | 0.3471 | 17.6685 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|