--- license: mit license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE language: - multilingual pipeline_tag: text-generation tags: - nlp - code - mlx widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? library_name: transformers base_model: microsoft/Phi-3.5-mini-instruct --- # ivanfioravanti/Phi-3.5-mini-instruct-italian-wine The Model [ivanfioravanti/Phi-3.5-mini-instruct-italian-wine](https://huggingface.co/ivanfioravanti/Phi-3.5-mini-instruct-italian-wine) was converted to MLX format from [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) using mlx-lm version **0.20.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("ivanfioravanti/Phi-3.5-mini-instruct-italian-wine") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```