File size: 24,613 Bytes
b18fe63
 
f845983
 
 
 
 
 
 
 
 
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
 
 
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
 
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
 
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
 
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
 
 
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
 
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b18fe63
f845983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b18fe63
 
f845983
 
 
 
 
 
 
 
b18fe63
f845983
b18fe63
f845983
b18fe63
f845983
 
 
 
 
b18fe63
f845983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b18fe63
 
f845983
 
b18fe63
f845983
b18fe63
f845983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b18fe63
f845983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b18fe63
f845983
 
 
 
 
 
 
 
 
 
 
 
 
b18fe63
f845983
 
 
 
 
 
 
 
 
 
b18fe63
 
 
f845983
 
 
 
 
 
 
 
 
 
 
 
 
 
b18fe63
f845983
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:208
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: '

    Name : Vigilant Protec

    Category: Consulting Services, Cybersecurity Solutions

    Department: Legal

    Location: London, UK

    Amount: 1987.65

    Card: Global Compliance Enhancement

    Trip Name: unknown

    '
  sentences:
  - '

    Name : Rosetta Tech

    Category: Technology Supplies, Software Solutions

    Department: Research & Development

    Location: Hamburg, Germany

    Amount: 2129.49

    Card: Advanced Research Toolkit Acquisition

    Trip Name: unknown

    '
  - '

    Name : Ikebana Studio

    Category: Office Decor Services, Art Supplies

    Department: All Departments

    Location: Kyoto, Japan

    Amount: 789.45

    Card: Creative Work Environment Initiative

    Trip Name: unknown

    '
  - '

    Name : Analytix Global Solutions

    Category: Business Intelligence Services, Regulatory Compliance Tools

    Department: Finance

    Location: London, UK

    Amount: 1323.67

    Card: Financial Compliance Enhancement

    Trip Name: unknown

    '
- source_sentence: '

    Name : La Gourmanderie Collective

    Category: Culinary Consulting, Team Building Activities

    Department: Marketing

    Location: Paris, France

    Amount: 1468.77

    Card: Innovative Cuisine Workshop

    Trip Name: unknown

    '
  sentences:
  - '

    Name : Gandalf

    Category: Financial Services, Consulting

    Department: Finance

    Location: Singapore

    Amount: 457.29

    Card: Financial Advisory Services

    Trip Name: unknown

    '
  - '

    Name : Anthro Insights

    Category: Talent Acquisition Services, Corporate Education Programs

    Department: Human Resource

    Location: London, UK

    Amount: 1440.75

    Card: Diversity & Inclusion

    Trip Name: unknown

    '
  - '

    Name : Baku

    Category: Ride Sharing

    Department: Sales

    Location: Baku, Azerbaijan

    Amount: 1247.88

    Card: Client Engagement Activities

    Trip Name: unknown

    '
- source_sentence: '

    Name : Nimbus Networks Inc.

    Category: Cloud Services, Application Hosting

    Department: Research & Development

    Location: Austin, TX

    Amount: 1134.67

    Card: NextGen Application Deployment

    Trip Name: unknown

    '
  sentences:
  - '

    Name : CleverInsight Solutions

    Category: Business Process Optimization

    Department: Finance

    Location: Toronto, Canada

    Amount: 2127.45

    Card: Quarterly Insights & Efficiency Project

    Trip Name: unknown

    '
  - '

    Name : SynergyBridge

    Category: Customer Experience Software, Revenue Growth Tools

    Department: Sales

    Location: San Francisco, CA

    Amount: 1558.72

    Card: Customer Relationship Enhancement

    Trip Name: unknown

    '
  - '

    Name : CloudArc

    Category: Cloud Storage Solutions, Internet Services

    Department: Engineering

    Location: Toronto, Canada

    Amount: 1573.63

    Card: Infrastructure Scaling

    Trip Name: unknown

    '
- source_sentence: '

    Name : GigaTrend

    Category: Data Services, Cloud Software Solutions

    Department: Research & Development

    Location: London, UK

    Amount: 1345.67

    Card: Data-Driven Innovation Project

    Trip Name: unknown

    '
  sentences:
  - '

    Name : Global Wellness Network

    Category: Corporate Wellness Programs, Employee Engagement

    Department: HR

    Location: Berlin, Germany

    Amount: 1285.75

    Card: Wellness and Engagement Program

    Trip Name: unknown

    '
  - '

    Name : TechXperts Global

    Category: IT Services, Consulting

    Department: IT Operations

    Location: Berlin, Germany

    Amount: 987.49

    Card: Quarterly System Assessment

    Trip Name: unknown

    '
  - '

    Name : InterStep Insight Reports

    Category: Data Services, Research Publications

    Department: Marketing

    Location: Toronto, Canada

    Amount: 1248.76

    Card: Strategic Market Research

    Trip Name: unknown

    '
- source_sentence: '

    Name : Viacom Solutions

    Category: Telecom Hardware, Network Architecture

    Department: Engineering

    Location: Tokyo, Japan

    Amount: 1450.67

    Card: Global Network Optimization Project

    Trip Name: unknown

    '
  sentences:
  - '

    Name : CloudMetric Solutions

    Category: Data Analytics, Virtual Infrastructure Management

    Department: Engineering

    Location: Toronto, Canada

    Amount: 1644.75

    Card: Real-Time Resource Monitoring

    Trip Name: unknown

    '
  - '

    Name : Il Vino e L''Arte

    Category: Culinary Experience, Cultural Event Venue

    Department: Marketing

    Location: Rome, Italy

    Amount: 748.32

    Card: Cultural Engagement Dinner

    Trip Name: unknown

    '
  - '

    Name : Pardalis Digital

    Category: Data Analytics Platform, Professional Networking Service

    Department: Sales

    Location: Dublin, Ireland

    Amount: 1456.75

    Card: Sales Intelligence & Networking Platform

    Trip Name: unknown

    '
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: bge base en train
      type: bge-base-en-train
    metrics:
    - type: cosine_accuracy
      value: 0.0
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.0
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.0
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.0
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.0
      name: Max Accuracy
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: bge base en eval
      type: bge-base-en-eval
    metrics:
    - type: cosine_accuracy
      value: 0.0
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.0
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.0
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.0
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.0
      name: Max Accuracy
---

# SentenceTransformer based on BAAI/bge-base-en

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ivanleomk/finetuned-BAAI-bge-base-en")
# Run inference
sentences = [
    '\nName : Viacom Solutions\nCategory: Telecom Hardware, Network Architecture\nDepartment: Engineering\nLocation: Tokyo, Japan\nAmount: 1450.67\nCard: Global Network Optimization Project\nTrip Name: unknown\n',
    '\nName : Pardalis Digital\nCategory: Data Analytics Platform, Professional Networking Service\nDepartment: Sales\nLocation: Dublin, Ireland\nAmount: 1456.75\nCard: Sales Intelligence & Networking Platform\nTrip Name: unknown\n',
    "\nName : Il Vino e L'Arte\nCategory: Culinary Experience, Cultural Event Venue\nDepartment: Marketing\nLocation: Rome, Italy\nAmount: 748.32\nCard: Cultural Engagement Dinner\nTrip Name: unknown\n",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet
* Dataset: `bge-base-en-train`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value   |
|:-------------------|:--------|
| cosine_accuracy    | 0.0     |
| dot_accuracy       | 0.0     |
| manhattan_accuracy | 0.0     |
| euclidean_accuracy | 0.0     |
| **max_accuracy**   | **0.0** |

#### Triplet
* Dataset: `bge-base-en-eval`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value   |
|:-------------------|:--------|
| cosine_accuracy    | 0.0     |
| dot_accuracy       | 0.0     |
| manhattan_accuracy | 0.0     |
| euclidean_accuracy | 0.0     |
| **max_accuracy**   | **0.0** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 208 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 208 samples:
  |         | sentence                                                                           | label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | type    | string                                                                             | int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  | details | <ul><li>min: 33 tokens</li><li>mean: 39.66 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>0: ~4.81%</li><li>1: ~5.29%</li><li>2: ~6.25%</li><li>3: ~2.40%</li><li>4: ~3.85%</li><li>5: ~4.33%</li><li>6: ~3.85%</li><li>7: ~2.40%</li><li>8: ~4.81%</li><li>9: ~3.37%</li><li>10: ~3.85%</li><li>11: ~3.85%</li><li>12: ~4.81%</li><li>13: ~4.81%</li><li>14: ~5.29%</li><li>15: ~3.37%</li><li>16: ~4.81%</li><li>17: ~4.33%</li><li>18: ~3.85%</li><li>19: ~1.92%</li><li>20: ~2.88%</li><li>21: ~2.88%</li><li>22: ~3.37%</li><li>23: ~0.96%</li><li>24: ~4.33%</li><li>25: ~2.40%</li><li>26: ~0.96%</li></ul> |
* Samples:
  | sentence                                                                                                                                                                                                                                                              | label          |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code><br>Name : Global Insights Group<br>Category: Subscriptions & Memberships, Data Services & Analytics<br>Department: Marketing<br>Location: London, UK<br>Amount: 1245.67<br>Card: Marketing Intelligence Fund<br>Trip Name: unknown<br></code>                  | <code>0</code> |
  | <code><br>Name : CyberGuard Provisions<br>Category: Security Software Solutions, Data Protection Services<br>Department: Information Security<br>Location: San Francisco, CA<br>Amount: 879.92<br>Card: Digital Fortress Action Plan<br>Trip Name: unknown<br></code> | <code>1</code> |
  | <code><br>Name : Apex Innovations Group<br>Category: Business Consulting, Training Services<br>Department: Executive<br>Location: Sydney, Australia<br>Amount: 1575.34<br>Card: Leadership Development Program<br>Trip Name: unknown<br></code>                       | <code>2</code> |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)

### Evaluation Dataset

#### Unnamed Dataset


* Size: 52 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 52 samples:
  |         | sentence                                                                           | label                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | type    | string                                                                             | int                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  | details | <ul><li>min: 32 tokens</li><li>mean: 40.13 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~5.77%</li><li>1: ~1.92%</li><li>2: ~3.85%</li><li>3: ~1.92%</li><li>4: ~1.92%</li><li>5: ~1.92%</li><li>6: ~5.77%</li><li>8: ~3.85%</li><li>9: ~7.69%</li><li>10: ~5.77%</li><li>12: ~3.85%</li><li>13: ~5.77%</li><li>14: ~3.85%</li><li>15: ~1.92%</li><li>16: ~9.62%</li><li>17: ~1.92%</li><li>18: ~1.92%</li><li>19: ~3.85%</li><li>20: ~1.92%</li><li>21: ~3.85%</li><li>22: ~5.77%</li><li>23: ~3.85%</li><li>24: ~5.77%</li><li>25: ~5.77%</li></ul> |
* Samples:
  | sentence                                                                                                                                                                                                                                    | label           |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------|
  | <code><br>Name : Viacom Solutions<br>Category: Telecom Hardware, Network Architecture<br>Department: Engineering<br>Location: Tokyo, Japan<br>Amount: 1450.67<br>Card: Global Network Optimization Project<br>Trip Name: unknown<br></code> | <code>9</code>  |
  | <code><br>Name : Vista Cascades Resort<br>Category: Hospitality, Event Hosting<br>Department: Sales<br>Location: Orlando, FL<br>Amount: 1823.45<br>Card: Annual Sales Retreat<br>Trip Name: Q3 Strategy Session<br></code>                  | <code>12</code> |
  | <code><br>Name : ActiveHealth CoLab<br>Category: Health Services, Wellness Solutions<br>Department: HR<br>Location: Amsterdam, Netherlands<br>Amount: 745.32<br>Card: Corporate Wellness Partnership<br>Trip Name: unknown<br></code>       | <code>23</code> |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
|:-----:|:----:|:-----------------------------:|:------------------------------:|
| 0     | 0    | -                             | 0.0                            |
| 5.0   | 65   | 0.0                           | -                              |


### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### BatchSemiHardTripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->