File size: 24,613 Bytes
b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 b18fe63 f845983 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:208
- loss:BatchSemiHardTripletLoss
base_model: BAAI/bge-base-en
widget:
- source_sentence: '
Name : Vigilant Protec
Category: Consulting Services, Cybersecurity Solutions
Department: Legal
Location: London, UK
Amount: 1987.65
Card: Global Compliance Enhancement
Trip Name: unknown
'
sentences:
- '
Name : Rosetta Tech
Category: Technology Supplies, Software Solutions
Department: Research & Development
Location: Hamburg, Germany
Amount: 2129.49
Card: Advanced Research Toolkit Acquisition
Trip Name: unknown
'
- '
Name : Ikebana Studio
Category: Office Decor Services, Art Supplies
Department: All Departments
Location: Kyoto, Japan
Amount: 789.45
Card: Creative Work Environment Initiative
Trip Name: unknown
'
- '
Name : Analytix Global Solutions
Category: Business Intelligence Services, Regulatory Compliance Tools
Department: Finance
Location: London, UK
Amount: 1323.67
Card: Financial Compliance Enhancement
Trip Name: unknown
'
- source_sentence: '
Name : La Gourmanderie Collective
Category: Culinary Consulting, Team Building Activities
Department: Marketing
Location: Paris, France
Amount: 1468.77
Card: Innovative Cuisine Workshop
Trip Name: unknown
'
sentences:
- '
Name : Gandalf
Category: Financial Services, Consulting
Department: Finance
Location: Singapore
Amount: 457.29
Card: Financial Advisory Services
Trip Name: unknown
'
- '
Name : Anthro Insights
Category: Talent Acquisition Services, Corporate Education Programs
Department: Human Resource
Location: London, UK
Amount: 1440.75
Card: Diversity & Inclusion
Trip Name: unknown
'
- '
Name : Baku
Category: Ride Sharing
Department: Sales
Location: Baku, Azerbaijan
Amount: 1247.88
Card: Client Engagement Activities
Trip Name: unknown
'
- source_sentence: '
Name : Nimbus Networks Inc.
Category: Cloud Services, Application Hosting
Department: Research & Development
Location: Austin, TX
Amount: 1134.67
Card: NextGen Application Deployment
Trip Name: unknown
'
sentences:
- '
Name : CleverInsight Solutions
Category: Business Process Optimization
Department: Finance
Location: Toronto, Canada
Amount: 2127.45
Card: Quarterly Insights & Efficiency Project
Trip Name: unknown
'
- '
Name : SynergyBridge
Category: Customer Experience Software, Revenue Growth Tools
Department: Sales
Location: San Francisco, CA
Amount: 1558.72
Card: Customer Relationship Enhancement
Trip Name: unknown
'
- '
Name : CloudArc
Category: Cloud Storage Solutions, Internet Services
Department: Engineering
Location: Toronto, Canada
Amount: 1573.63
Card: Infrastructure Scaling
Trip Name: unknown
'
- source_sentence: '
Name : GigaTrend
Category: Data Services, Cloud Software Solutions
Department: Research & Development
Location: London, UK
Amount: 1345.67
Card: Data-Driven Innovation Project
Trip Name: unknown
'
sentences:
- '
Name : Global Wellness Network
Category: Corporate Wellness Programs, Employee Engagement
Department: HR
Location: Berlin, Germany
Amount: 1285.75
Card: Wellness and Engagement Program
Trip Name: unknown
'
- '
Name : TechXperts Global
Category: IT Services, Consulting
Department: IT Operations
Location: Berlin, Germany
Amount: 987.49
Card: Quarterly System Assessment
Trip Name: unknown
'
- '
Name : InterStep Insight Reports
Category: Data Services, Research Publications
Department: Marketing
Location: Toronto, Canada
Amount: 1248.76
Card: Strategic Market Research
Trip Name: unknown
'
- source_sentence: '
Name : Viacom Solutions
Category: Telecom Hardware, Network Architecture
Department: Engineering
Location: Tokyo, Japan
Amount: 1450.67
Card: Global Network Optimization Project
Trip Name: unknown
'
sentences:
- '
Name : CloudMetric Solutions
Category: Data Analytics, Virtual Infrastructure Management
Department: Engineering
Location: Toronto, Canada
Amount: 1644.75
Card: Real-Time Resource Monitoring
Trip Name: unknown
'
- '
Name : Il Vino e L''Arte
Category: Culinary Experience, Cultural Event Venue
Department: Marketing
Location: Rome, Italy
Amount: 748.32
Card: Cultural Engagement Dinner
Trip Name: unknown
'
- '
Name : Pardalis Digital
Category: Data Analytics Platform, Professional Networking Service
Department: Sales
Location: Dublin, Ireland
Amount: 1456.75
Card: Sales Intelligence & Networking Platform
Trip Name: unknown
'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en
results:
- task:
type: triplet
name: Triplet
dataset:
name: bge base en train
type: bge-base-en-train
metrics:
- type: cosine_accuracy
value: 0.0
name: Cosine Accuracy
- type: dot_accuracy
value: 0.0
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.0
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.0
name: Euclidean Accuracy
- type: max_accuracy
value: 0.0
name: Max Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: bge base en eval
type: bge-base-en-eval
metrics:
- type: cosine_accuracy
value: 0.0
name: Cosine Accuracy
- type: dot_accuracy
value: 0.0
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.0
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.0
name: Euclidean Accuracy
- type: max_accuracy
value: 0.0
name: Max Accuracy
---
# SentenceTransformer based on BAAI/bge-base-en
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ivanleomk/finetuned-BAAI-bge-base-en")
# Run inference
sentences = [
'\nName : Viacom Solutions\nCategory: Telecom Hardware, Network Architecture\nDepartment: Engineering\nLocation: Tokyo, Japan\nAmount: 1450.67\nCard: Global Network Optimization Project\nTrip Name: unknown\n',
'\nName : Pardalis Digital\nCategory: Data Analytics Platform, Professional Networking Service\nDepartment: Sales\nLocation: Dublin, Ireland\nAmount: 1456.75\nCard: Sales Intelligence & Networking Platform\nTrip Name: unknown\n',
"\nName : Il Vino e L'Arte\nCategory: Culinary Experience, Cultural Event Venue\nDepartment: Marketing\nLocation: Rome, Italy\nAmount: 748.32\nCard: Cultural Engagement Dinner\nTrip Name: unknown\n",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `bge-base-en-train`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:--------|
| cosine_accuracy | 0.0 |
| dot_accuracy | 0.0 |
| manhattan_accuracy | 0.0 |
| euclidean_accuracy | 0.0 |
| **max_accuracy** | **0.0** |
#### Triplet
* Dataset: `bge-base-en-eval`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:--------|
| cosine_accuracy | 0.0 |
| dot_accuracy | 0.0 |
| manhattan_accuracy | 0.0 |
| euclidean_accuracy | 0.0 |
| **max_accuracy** | **0.0** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 208 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 208 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details | <ul><li>min: 33 tokens</li><li>mean: 39.66 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>0: ~4.81%</li><li>1: ~5.29%</li><li>2: ~6.25%</li><li>3: ~2.40%</li><li>4: ~3.85%</li><li>5: ~4.33%</li><li>6: ~3.85%</li><li>7: ~2.40%</li><li>8: ~4.81%</li><li>9: ~3.37%</li><li>10: ~3.85%</li><li>11: ~3.85%</li><li>12: ~4.81%</li><li>13: ~4.81%</li><li>14: ~5.29%</li><li>15: ~3.37%</li><li>16: ~4.81%</li><li>17: ~4.33%</li><li>18: ~3.85%</li><li>19: ~1.92%</li><li>20: ~2.88%</li><li>21: ~2.88%</li><li>22: ~3.37%</li><li>23: ~0.96%</li><li>24: ~4.33%</li><li>25: ~2.40%</li><li>26: ~0.96%</li></ul> |
* Samples:
| sentence | label |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code><br>Name : Global Insights Group<br>Category: Subscriptions & Memberships, Data Services & Analytics<br>Department: Marketing<br>Location: London, UK<br>Amount: 1245.67<br>Card: Marketing Intelligence Fund<br>Trip Name: unknown<br></code> | <code>0</code> |
| <code><br>Name : CyberGuard Provisions<br>Category: Security Software Solutions, Data Protection Services<br>Department: Information Security<br>Location: San Francisco, CA<br>Amount: 879.92<br>Card: Digital Fortress Action Plan<br>Trip Name: unknown<br></code> | <code>1</code> |
| <code><br>Name : Apex Innovations Group<br>Category: Business Consulting, Training Services<br>Department: Executive<br>Location: Sydney, Australia<br>Amount: 1575.34<br>Card: Leadership Development Program<br>Trip Name: unknown<br></code> | <code>2</code> |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 52 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 52 samples:
| | sentence | label |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details | <ul><li>min: 32 tokens</li><li>mean: 40.13 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~5.77%</li><li>1: ~1.92%</li><li>2: ~3.85%</li><li>3: ~1.92%</li><li>4: ~1.92%</li><li>5: ~1.92%</li><li>6: ~5.77%</li><li>8: ~3.85%</li><li>9: ~7.69%</li><li>10: ~5.77%</li><li>12: ~3.85%</li><li>13: ~5.77%</li><li>14: ~3.85%</li><li>15: ~1.92%</li><li>16: ~9.62%</li><li>17: ~1.92%</li><li>18: ~1.92%</li><li>19: ~3.85%</li><li>20: ~1.92%</li><li>21: ~3.85%</li><li>22: ~5.77%</li><li>23: ~3.85%</li><li>24: ~5.77%</li><li>25: ~5.77%</li></ul> |
* Samples:
| sentence | label |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------|
| <code><br>Name : Viacom Solutions<br>Category: Telecom Hardware, Network Architecture<br>Department: Engineering<br>Location: Tokyo, Japan<br>Amount: 1450.67<br>Card: Global Network Optimization Project<br>Trip Name: unknown<br></code> | <code>9</code> |
| <code><br>Name : Vista Cascades Resort<br>Category: Hospitality, Event Hosting<br>Department: Sales<br>Location: Orlando, FL<br>Amount: 1823.45<br>Card: Annual Sales Retreat<br>Trip Name: Q3 Strategy Session<br></code> | <code>12</code> |
| <code><br>Name : ActiveHealth CoLab<br>Category: Health Services, Wellness Solutions<br>Department: HR<br>Location: Amsterdam, Netherlands<br>Amount: 745.32<br>Card: Corporate Wellness Partnership<br>Trip Name: unknown<br></code> | <code>23</code> |
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
|:-----:|:----:|:-----------------------------:|:------------------------------:|
| 0 | 0 | - | 0.0 |
| 5.0 | 65 | 0.0 | - |
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### BatchSemiHardTripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |