diff --git "a/README.md" "b/README.md" --- "a/README.md" +++ "b/README.md" @@ -1,3010 +1,774 @@ --- tags: -- mteb -model-index: -- name: bge-base-en - results: - - task: - type: Classification - dataset: - type: mteb/amazon_counterfactual - name: MTEB AmazonCounterfactualClassification (en) - config: en - split: test - revision: e8379541af4e31359cca9fbcf4b00f2671dba205 - metrics: - - type: accuracy - value: 75.73134328358209 - - type: ap - value: 38.97277232632892 - - type: f1 - value: 69.81740361139785 - - task: - type: Classification - dataset: - type: mteb/amazon_polarity - name: MTEB AmazonPolarityClassification - config: default - split: test - revision: e2d317d38cd51312af73b3d32a06d1a08b442046 - metrics: - - type: accuracy - value: 92.56522500000001 - - type: ap - value: 88.88821771869553 - - type: f1 - value: 92.54817512659696 - - task: - type: Classification - dataset: - type: mteb/amazon_reviews_multi - name: MTEB AmazonReviewsClassification (en) - config: en - split: test - revision: 1399c76144fd37290681b995c656ef9b2e06e26d - metrics: - - type: accuracy - value: 46.91 - - type: f1 - value: 46.28536394320311 - - task: - type: Retrieval - dataset: - type: arguana - name: MTEB ArguAna - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 38.834 - - type: map_at_10 - value: 53.564 - - type: map_at_100 - value: 54.230000000000004 - - type: map_at_1000 - value: 54.235 - - type: map_at_3 - value: 49.49 - - type: map_at_5 - value: 51.784 - - type: mrr_at_1 - value: 39.26 - - type: mrr_at_10 - value: 53.744 - - type: mrr_at_100 - value: 54.410000000000004 - - type: mrr_at_1000 - value: 54.415 - - type: mrr_at_3 - value: 49.656 - - type: mrr_at_5 - value: 52.018 - - type: ndcg_at_1 - value: 38.834 - - type: ndcg_at_10 - value: 61.487 - - type: ndcg_at_100 - value: 64.303 - - type: ndcg_at_1000 - value: 64.408 - - type: ndcg_at_3 - value: 53.116 - - type: ndcg_at_5 - value: 57.248 - - type: precision_at_1 - value: 38.834 - - type: precision_at_10 - value: 8.663 - - type: precision_at_100 - value: 0.989 - - type: precision_at_1000 - value: 0.1 - - type: precision_at_3 - value: 21.218999999999998 - - type: precision_at_5 - value: 14.737 - - type: recall_at_1 - value: 38.834 - - type: recall_at_10 - value: 86.629 - - type: recall_at_100 - value: 98.86200000000001 - - type: recall_at_1000 - value: 99.644 - - type: recall_at_3 - value: 63.656 - - type: recall_at_5 - value: 73.68400000000001 - - task: - type: Clustering - dataset: - type: mteb/arxiv-clustering-p2p - name: MTEB ArxivClusteringP2P - config: default - split: test - revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d - metrics: - - type: v_measure - value: 48.88475477433035 - - task: - type: Clustering - dataset: - type: mteb/arxiv-clustering-s2s - name: MTEB ArxivClusteringS2S - config: default - split: test - revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 - metrics: - - type: v_measure - value: 42.85053138403176 - - task: - type: Reranking - dataset: - type: mteb/askubuntudupquestions-reranking - name: MTEB AskUbuntuDupQuestions - config: default - split: test - revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 - metrics: - - type: map - value: 62.23221013208242 - - type: mrr - value: 74.64857318735436 - - task: - type: STS - dataset: - type: mteb/biosses-sts - name: MTEB BIOSSES - config: default - split: test - revision: d3fb88f8f02e40887cd149695127462bbcf29b4a - metrics: - - type: cos_sim_pearson - value: 87.4403443247284 - - type: cos_sim_spearman - value: 85.5326718115169 - - type: euclidean_pearson - value: 86.0114007449595 - - type: euclidean_spearman - value: 86.05979225604875 - - type: manhattan_pearson - value: 86.05423806568598 - - type: manhattan_spearman - value: 86.02485170086835 - - task: - type: Classification - dataset: - type: mteb/banking77 - name: MTEB Banking77Classification - config: default - split: test - revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 - metrics: - - type: accuracy - value: 86.44480519480518 - - type: f1 - value: 86.41301900941988 - - task: - type: Clustering - dataset: - type: mteb/biorxiv-clustering-p2p - name: MTEB BiorxivClusteringP2P - config: default - split: test - revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 - metrics: - - type: v_measure - value: 40.17547250880036 - - task: - type: Clustering - dataset: - type: mteb/biorxiv-clustering-s2s - name: MTEB BiorxivClusteringS2S - config: default - split: test - revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 - metrics: - - type: v_measure - value: 37.74514172687293 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackAndroidRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 32.096000000000004 - - type: map_at_10 - value: 43.345 - - type: map_at_100 - value: 44.73 - - type: map_at_1000 - value: 44.85 - - type: map_at_3 - value: 39.956 - - type: map_at_5 - value: 41.727 - - type: mrr_at_1 - value: 38.769999999999996 - - type: mrr_at_10 - value: 48.742000000000004 - - type: mrr_at_100 - value: 49.474000000000004 - - type: mrr_at_1000 - value: 49.513 - - type: mrr_at_3 - value: 46.161 - - type: mrr_at_5 - value: 47.721000000000004 - - type: ndcg_at_1 - value: 38.769999999999996 - - type: ndcg_at_10 - value: 49.464999999999996 - - type: ndcg_at_100 - value: 54.632000000000005 - - type: ndcg_at_1000 - value: 56.52 - - type: ndcg_at_3 - value: 44.687 - - type: ndcg_at_5 - value: 46.814 - - type: precision_at_1 - value: 38.769999999999996 - - type: precision_at_10 - value: 9.471 - - type: precision_at_100 - value: 1.4909999999999999 - - type: precision_at_1000 - value: 0.194 - - type: precision_at_3 - value: 21.268 - - type: precision_at_5 - value: 15.079 - - type: recall_at_1 - value: 32.096000000000004 - - type: recall_at_10 - value: 60.99099999999999 - - type: recall_at_100 - value: 83.075 - - type: recall_at_1000 - value: 95.178 - - type: recall_at_3 - value: 47.009 - - type: recall_at_5 - value: 53.348 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackEnglishRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 32.588 - - type: map_at_10 - value: 42.251 - - type: map_at_100 - value: 43.478 - - type: map_at_1000 - value: 43.617 - - type: map_at_3 - value: 39.381 - - type: map_at_5 - value: 41.141 - - type: mrr_at_1 - value: 41.21 - - type: mrr_at_10 - value: 48.765 - - type: mrr_at_100 - value: 49.403000000000006 - - type: mrr_at_1000 - value: 49.451 - - type: mrr_at_3 - value: 46.73 - - type: mrr_at_5 - value: 47.965999999999994 - - type: ndcg_at_1 - value: 41.21 - - type: ndcg_at_10 - value: 47.704 - - type: ndcg_at_100 - value: 51.916 - - type: ndcg_at_1000 - value: 54.013999999999996 - - type: ndcg_at_3 - value: 44.007000000000005 - - type: ndcg_at_5 - value: 45.936 - - type: precision_at_1 - value: 41.21 - - type: precision_at_10 - value: 8.885 - - type: precision_at_100 - value: 1.409 - - type: precision_at_1000 - value: 0.189 - - type: precision_at_3 - value: 21.274 - - type: precision_at_5 - value: 15.045 - - type: recall_at_1 - value: 32.588 - - type: recall_at_10 - value: 56.333 - - type: recall_at_100 - value: 74.251 - - type: recall_at_1000 - value: 87.518 - - type: recall_at_3 - value: 44.962 - - type: recall_at_5 - value: 50.609 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackGamingRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 40.308 - - type: map_at_10 - value: 53.12 - - type: map_at_100 - value: 54.123 - - type: map_at_1000 - value: 54.173 - - type: map_at_3 - value: 50.017999999999994 - - type: map_at_5 - value: 51.902 - - type: mrr_at_1 - value: 46.394999999999996 - - type: mrr_at_10 - value: 56.531 - - type: mrr_at_100 - value: 57.19800000000001 - - type: mrr_at_1000 - value: 57.225 - - type: mrr_at_3 - value: 54.368 - - type: mrr_at_5 - value: 55.713 - - type: ndcg_at_1 - value: 46.394999999999996 - - type: ndcg_at_10 - value: 58.811 - - type: ndcg_at_100 - value: 62.834 - - type: ndcg_at_1000 - value: 63.849999999999994 - - type: ndcg_at_3 - value: 53.88699999999999 - - type: ndcg_at_5 - value: 56.477999999999994 - - type: precision_at_1 - value: 46.394999999999996 - - type: precision_at_10 - value: 9.398 - - type: precision_at_100 - value: 1.2309999999999999 - - type: precision_at_1000 - value: 0.136 - - type: precision_at_3 - value: 24.221999999999998 - - type: precision_at_5 - value: 16.539 - - type: recall_at_1 - value: 40.308 - - type: recall_at_10 - value: 72.146 - - type: recall_at_100 - value: 89.60900000000001 - - type: recall_at_1000 - value: 96.733 - - type: recall_at_3 - value: 58.91499999999999 - - type: recall_at_5 - value: 65.34299999999999 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackGisRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 27.383000000000003 - - type: map_at_10 - value: 35.802 - - type: map_at_100 - value: 36.756 - - type: map_at_1000 - value: 36.826 - - type: map_at_3 - value: 32.923 - - type: map_at_5 - value: 34.577999999999996 - - type: mrr_at_1 - value: 29.604999999999997 - - type: mrr_at_10 - value: 37.918 - - type: mrr_at_100 - value: 38.732 - - type: mrr_at_1000 - value: 38.786 - - type: mrr_at_3 - value: 35.198 - - type: mrr_at_5 - value: 36.808 - - type: ndcg_at_1 - value: 29.604999999999997 - - type: ndcg_at_10 - value: 40.836 - - type: ndcg_at_100 - value: 45.622 - - type: ndcg_at_1000 - value: 47.427 - - type: ndcg_at_3 - value: 35.208 - - type: ndcg_at_5 - value: 38.066 - - type: precision_at_1 - value: 29.604999999999997 - - type: precision_at_10 - value: 6.226 - - type: precision_at_100 - value: 0.9079999999999999 - - type: precision_at_1000 - value: 0.11 - - type: precision_at_3 - value: 14.463000000000001 - - type: precision_at_5 - value: 10.35 - - type: recall_at_1 - value: 27.383000000000003 - - type: recall_at_10 - value: 54.434000000000005 - - type: recall_at_100 - value: 76.632 - - type: recall_at_1000 - value: 90.25 - - type: recall_at_3 - value: 39.275 - - type: recall_at_5 - value: 46.225 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackMathematicaRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 17.885 - - type: map_at_10 - value: 25.724000000000004 - - type: map_at_100 - value: 26.992 - - type: map_at_1000 - value: 27.107999999999997 - - type: map_at_3 - value: 23.04 - - type: map_at_5 - value: 24.529 - - type: mrr_at_1 - value: 22.264 - - type: mrr_at_10 - value: 30.548 - - type: mrr_at_100 - value: 31.593 - - type: mrr_at_1000 - value: 31.657999999999998 - - type: mrr_at_3 - value: 27.756999999999998 - - type: mrr_at_5 - value: 29.398999999999997 - - type: ndcg_at_1 - value: 22.264 - - type: ndcg_at_10 - value: 30.902 - - type: ndcg_at_100 - value: 36.918 - - type: ndcg_at_1000 - value: 39.735 - - type: ndcg_at_3 - value: 25.915 - - type: ndcg_at_5 - value: 28.255999999999997 - - type: precision_at_1 - value: 22.264 - - type: precision_at_10 - value: 5.634 - - type: precision_at_100 - value: 0.9939999999999999 - - type: precision_at_1000 - value: 0.13699999999999998 - - type: precision_at_3 - value: 12.396 - - type: precision_at_5 - value: 9.055 - - type: recall_at_1 - value: 17.885 - - type: recall_at_10 - value: 42.237 - - type: recall_at_100 - value: 68.489 - - type: recall_at_1000 - value: 88.721 - - type: recall_at_3 - value: 28.283 - - type: recall_at_5 - value: 34.300000000000004 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackPhysicsRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 29.737000000000002 - - type: map_at_10 - value: 39.757 - - type: map_at_100 - value: 40.992 - - type: map_at_1000 - value: 41.102 - - type: map_at_3 - value: 36.612 - - type: map_at_5 - value: 38.413000000000004 - - type: mrr_at_1 - value: 35.804 - - type: mrr_at_10 - value: 45.178000000000004 - - type: mrr_at_100 - value: 45.975 - - type: mrr_at_1000 - value: 46.021 - - type: mrr_at_3 - value: 42.541000000000004 - - type: mrr_at_5 - value: 44.167 - - type: ndcg_at_1 - value: 35.804 - - type: ndcg_at_10 - value: 45.608 - - type: ndcg_at_100 - value: 50.746 - - type: ndcg_at_1000 - value: 52.839999999999996 - - type: ndcg_at_3 - value: 40.52 - - type: ndcg_at_5 - value: 43.051 - - type: precision_at_1 - value: 35.804 - - type: precision_at_10 - value: 8.104 - - type: precision_at_100 - value: 1.256 - - type: precision_at_1000 - value: 0.161 - - type: precision_at_3 - value: 19.121 - - type: precision_at_5 - value: 13.532 - - type: recall_at_1 - value: 29.737000000000002 - - type: recall_at_10 - value: 57.66 - - type: recall_at_100 - value: 79.121 - - type: recall_at_1000 - value: 93.023 - - type: recall_at_3 - value: 43.13 - - type: recall_at_5 - value: 49.836000000000006 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackProgrammersRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 26.299 - - type: map_at_10 - value: 35.617 - - type: map_at_100 - value: 36.972 - - type: map_at_1000 - value: 37.096000000000004 - - type: map_at_3 - value: 32.653999999999996 - - type: map_at_5 - value: 34.363 - - type: mrr_at_1 - value: 32.877 - - type: mrr_at_10 - value: 41.423 - - type: mrr_at_100 - value: 42.333999999999996 - - type: mrr_at_1000 - value: 42.398 - - type: mrr_at_3 - value: 39.193 - - type: mrr_at_5 - value: 40.426 - - type: ndcg_at_1 - value: 32.877 - - type: ndcg_at_10 - value: 41.271 - - type: ndcg_at_100 - value: 46.843 - - type: ndcg_at_1000 - value: 49.366 - - type: ndcg_at_3 - value: 36.735 - - type: ndcg_at_5 - value: 38.775999999999996 - - type: precision_at_1 - value: 32.877 - - type: precision_at_10 - value: 7.580000000000001 - - type: precision_at_100 - value: 1.192 - - type: precision_at_1000 - value: 0.158 - - type: precision_at_3 - value: 17.541999999999998 - - type: precision_at_5 - value: 12.443 - - type: recall_at_1 - value: 26.299 - - type: recall_at_10 - value: 52.256 - - type: recall_at_100 - value: 75.919 - - type: recall_at_1000 - value: 93.185 - - type: recall_at_3 - value: 39.271 - - type: recall_at_5 - value: 44.901 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 27.05741666666667 - - type: map_at_10 - value: 36.086416666666665 - - type: map_at_100 - value: 37.26916666666667 - - type: map_at_1000 - value: 37.38191666666666 - - type: map_at_3 - value: 33.34225 - - type: map_at_5 - value: 34.86425 - - type: mrr_at_1 - value: 32.06008333333333 - - type: mrr_at_10 - value: 40.36658333333333 - - type: mrr_at_100 - value: 41.206500000000005 - - type: mrr_at_1000 - value: 41.261083333333325 - - type: mrr_at_3 - value: 38.01208333333334 - - type: mrr_at_5 - value: 39.36858333333333 - - type: ndcg_at_1 - value: 32.06008333333333 - - type: ndcg_at_10 - value: 41.3535 - - type: ndcg_at_100 - value: 46.42066666666666 - - type: ndcg_at_1000 - value: 48.655166666666666 - - type: ndcg_at_3 - value: 36.78041666666667 - - type: ndcg_at_5 - value: 38.91783333333334 - - type: precision_at_1 - value: 32.06008333333333 - - type: precision_at_10 - value: 7.169833333333332 - - type: precision_at_100 - value: 1.1395 - - type: precision_at_1000 - value: 0.15158333333333332 - - type: precision_at_3 - value: 16.852 - - type: precision_at_5 - value: 11.8645 - - type: recall_at_1 - value: 27.05741666666667 - - type: recall_at_10 - value: 52.64491666666666 - - type: recall_at_100 - value: 74.99791666666667 - - type: recall_at_1000 - value: 90.50524999999999 - - type: recall_at_3 - value: 39.684000000000005 - - type: recall_at_5 - value: 45.37225 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackStatsRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 25.607999999999997 - - type: map_at_10 - value: 32.28 - - type: map_at_100 - value: 33.261 - - type: map_at_1000 - value: 33.346 - - type: map_at_3 - value: 30.514999999999997 - - type: map_at_5 - value: 31.415 - - type: mrr_at_1 - value: 28.988000000000003 - - type: mrr_at_10 - value: 35.384 - - type: mrr_at_100 - value: 36.24 - - type: mrr_at_1000 - value: 36.299 - - type: mrr_at_3 - value: 33.717000000000006 - - type: mrr_at_5 - value: 34.507 - - type: ndcg_at_1 - value: 28.988000000000003 - - type: ndcg_at_10 - value: 36.248000000000005 - - type: ndcg_at_100 - value: 41.034 - - type: ndcg_at_1000 - value: 43.35 - - type: ndcg_at_3 - value: 32.987 - - type: ndcg_at_5 - value: 34.333999999999996 - - type: precision_at_1 - value: 28.988000000000003 - - type: precision_at_10 - value: 5.506 - - type: precision_at_100 - value: 0.853 - - type: precision_at_1000 - value: 0.11199999999999999 - - type: precision_at_3 - value: 14.11 - - type: precision_at_5 - value: 9.417 - - type: recall_at_1 - value: 25.607999999999997 - - type: recall_at_10 - value: 45.344 - - type: recall_at_100 - value: 67.132 - - type: recall_at_1000 - value: 84.676 - - type: recall_at_3 - value: 36.02 - - type: recall_at_5 - value: 39.613 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackTexRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 18.44 - - type: map_at_10 - value: 25.651000000000003 - - type: map_at_100 - value: 26.735 - - type: map_at_1000 - value: 26.86 - - type: map_at_3 - value: 23.409 - - type: map_at_5 - value: 24.604 - - type: mrr_at_1 - value: 22.195 - - type: mrr_at_10 - value: 29.482000000000003 - - type: mrr_at_100 - value: 30.395 - - type: mrr_at_1000 - value: 30.471999999999998 - - type: mrr_at_3 - value: 27.409 - - type: mrr_at_5 - value: 28.553 - - type: ndcg_at_1 - value: 22.195 - - type: ndcg_at_10 - value: 30.242 - - type: ndcg_at_100 - value: 35.397 - - type: ndcg_at_1000 - value: 38.287 - - type: ndcg_at_3 - value: 26.201 - - type: ndcg_at_5 - value: 28.008 - - type: precision_at_1 - value: 22.195 - - type: precision_at_10 - value: 5.372 - - type: precision_at_100 - value: 0.9259999999999999 - - type: precision_at_1000 - value: 0.135 - - type: precision_at_3 - value: 12.228 - - type: precision_at_5 - value: 8.727 - - type: recall_at_1 - value: 18.44 - - type: recall_at_10 - value: 40.325 - - type: recall_at_100 - value: 63.504000000000005 - - type: recall_at_1000 - value: 83.909 - - type: recall_at_3 - value: 28.925 - - type: recall_at_5 - value: 33.641 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackUnixRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 26.535999999999998 - - type: map_at_10 - value: 35.358000000000004 - - type: map_at_100 - value: 36.498999999999995 - - type: map_at_1000 - value: 36.597 - - type: map_at_3 - value: 32.598 - - type: map_at_5 - value: 34.185 - - type: mrr_at_1 - value: 31.25 - - type: mrr_at_10 - value: 39.593 - - type: mrr_at_100 - value: 40.443 - - type: mrr_at_1000 - value: 40.498 - - type: mrr_at_3 - value: 37.018 - - type: mrr_at_5 - value: 38.492 - - type: ndcg_at_1 - value: 31.25 - - type: ndcg_at_10 - value: 40.71 - - type: ndcg_at_100 - value: 46.079 - - type: ndcg_at_1000 - value: 48.287 - - type: ndcg_at_3 - value: 35.667 - - type: ndcg_at_5 - value: 38.080000000000005 - - type: precision_at_1 - value: 31.25 - - type: precision_at_10 - value: 6.847 - - type: precision_at_100 - value: 1.079 - - type: precision_at_1000 - value: 0.13699999999999998 - - type: precision_at_3 - value: 16.262 - - type: precision_at_5 - value: 11.455 - - type: recall_at_1 - value: 26.535999999999998 - - type: recall_at_10 - value: 52.92099999999999 - - type: recall_at_100 - value: 76.669 - - type: recall_at_1000 - value: 92.096 - - type: recall_at_3 - value: 38.956 - - type: recall_at_5 - value: 45.239000000000004 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackWebmastersRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 24.691 - - type: map_at_10 - value: 33.417 - - type: map_at_100 - value: 35.036 - - type: map_at_1000 - value: 35.251 - - type: map_at_3 - value: 30.646 - - type: map_at_5 - value: 32.177 - - type: mrr_at_1 - value: 30.04 - - type: mrr_at_10 - value: 37.905 - - type: mrr_at_100 - value: 38.929 - - type: mrr_at_1000 - value: 38.983000000000004 - - type: mrr_at_3 - value: 35.276999999999994 - - type: mrr_at_5 - value: 36.897000000000006 - - type: ndcg_at_1 - value: 30.04 - - type: ndcg_at_10 - value: 39.037 - - type: ndcg_at_100 - value: 44.944 - - type: ndcg_at_1000 - value: 47.644 - - type: ndcg_at_3 - value: 34.833999999999996 - - type: ndcg_at_5 - value: 36.83 - - type: precision_at_1 - value: 30.04 - - type: precision_at_10 - value: 7.4510000000000005 - - type: precision_at_100 - value: 1.492 - - type: precision_at_1000 - value: 0.234 - - type: precision_at_3 - value: 16.337 - - type: precision_at_5 - value: 11.897 - - type: recall_at_1 - value: 24.691 - - type: recall_at_10 - value: 49.303999999999995 - - type: recall_at_100 - value: 76.20400000000001 - - type: recall_at_1000 - value: 93.30000000000001 - - type: recall_at_3 - value: 36.594 - - type: recall_at_5 - value: 42.41 - - task: - type: Retrieval - dataset: - type: BeIR/cqadupstack - name: MTEB CQADupstackWordpressRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 23.118 - - type: map_at_10 - value: 30.714999999999996 - - type: map_at_100 - value: 31.656000000000002 - - type: map_at_1000 - value: 31.757 - - type: map_at_3 - value: 28.355000000000004 - - type: map_at_5 - value: 29.337000000000003 - - type: mrr_at_1 - value: 25.323 - - type: mrr_at_10 - value: 32.93 - - type: mrr_at_100 - value: 33.762 - - type: mrr_at_1000 - value: 33.829 - - type: mrr_at_3 - value: 30.775999999999996 - - type: mrr_at_5 - value: 31.774 - - type: ndcg_at_1 - value: 25.323 - - type: ndcg_at_10 - value: 35.408 - - type: ndcg_at_100 - value: 40.083 - - type: ndcg_at_1000 - value: 42.542 - - type: ndcg_at_3 - value: 30.717 - - type: ndcg_at_5 - value: 32.385000000000005 - - type: precision_at_1 - value: 25.323 - - type: precision_at_10 - value: 5.564 - - type: precision_at_100 - value: 0.843 - - type: precision_at_1000 - value: 0.116 - - type: precision_at_3 - value: 13.001 - - type: precision_at_5 - value: 8.834999999999999 - - type: recall_at_1 - value: 23.118 - - type: recall_at_10 - value: 47.788000000000004 - - type: recall_at_100 - value: 69.37 - - type: recall_at_1000 - value: 87.47399999999999 - - type: recall_at_3 - value: 34.868 - - type: recall_at_5 - value: 39.001999999999995 - - task: - type: Retrieval - dataset: - type: climate-fever - name: MTEB ClimateFEVER - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 14.288 - - type: map_at_10 - value: 23.256 - - type: map_at_100 - value: 25.115 - - type: map_at_1000 - value: 25.319000000000003 - - type: map_at_3 - value: 20.005 - - type: map_at_5 - value: 21.529999999999998 - - type: mrr_at_1 - value: 31.401 - - type: mrr_at_10 - value: 42.251 - - type: mrr_at_100 - value: 43.236999999999995 - - type: mrr_at_1000 - value: 43.272 - - type: mrr_at_3 - value: 39.164 - - type: mrr_at_5 - value: 40.881 - - type: ndcg_at_1 - value: 31.401 - - type: ndcg_at_10 - value: 31.615 - - type: ndcg_at_100 - value: 38.982 - - type: ndcg_at_1000 - value: 42.496 - - type: ndcg_at_3 - value: 26.608999999999998 - - type: ndcg_at_5 - value: 28.048000000000002 - - type: precision_at_1 - value: 31.401 - - type: precision_at_10 - value: 9.536999999999999 - - type: precision_at_100 - value: 1.763 - - type: precision_at_1000 - value: 0.241 - - type: precision_at_3 - value: 19.153000000000002 - - type: precision_at_5 - value: 14.228 - - type: recall_at_1 - value: 14.288 - - type: recall_at_10 - value: 36.717 - - type: recall_at_100 - value: 61.9 - - type: recall_at_1000 - value: 81.676 - - type: recall_at_3 - value: 24.203 - - type: recall_at_5 - value: 28.793999999999997 - - task: - type: Retrieval - dataset: - type: dbpedia-entity - name: MTEB DBPedia - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 9.019 - - type: map_at_10 - value: 19.963 - - type: map_at_100 - value: 28.834 - - type: map_at_1000 - value: 30.537999999999997 - - type: map_at_3 - value: 14.45 - - type: map_at_5 - value: 16.817999999999998 - - type: mrr_at_1 - value: 65.75 - - type: mrr_at_10 - value: 74.646 - - type: mrr_at_100 - value: 74.946 - - type: mrr_at_1000 - value: 74.95100000000001 - - type: mrr_at_3 - value: 72.625 - - type: mrr_at_5 - value: 74.012 - - type: ndcg_at_1 - value: 54 - - type: ndcg_at_10 - value: 42.014 - - type: ndcg_at_100 - value: 47.527 - - type: ndcg_at_1000 - value: 54.911 - - type: ndcg_at_3 - value: 46.586 - - type: ndcg_at_5 - value: 43.836999999999996 - - type: precision_at_1 - value: 65.75 - - type: precision_at_10 - value: 33.475 - - type: precision_at_100 - value: 11.16 - - type: precision_at_1000 - value: 2.145 - - type: precision_at_3 - value: 50.083 - - type: precision_at_5 - value: 42.55 - - type: recall_at_1 - value: 9.019 - - type: recall_at_10 - value: 25.558999999999997 - - type: recall_at_100 - value: 53.937999999999995 - - type: recall_at_1000 - value: 77.67399999999999 - - type: recall_at_3 - value: 15.456 - - type: recall_at_5 - value: 19.259 - - task: - type: Classification - dataset: - type: mteb/emotion - name: MTEB EmotionClassification - config: default - split: test - revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 - metrics: - - type: accuracy - value: 52.635 - - type: f1 - value: 47.692783881403926 - - task: - type: Retrieval - dataset: - type: fever - name: MTEB FEVER - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 76.893 - - type: map_at_10 - value: 84.897 - - type: map_at_100 - value: 85.122 - - type: map_at_1000 - value: 85.135 - - type: map_at_3 - value: 83.88 - - type: map_at_5 - value: 84.565 - - type: mrr_at_1 - value: 83.003 - - type: mrr_at_10 - value: 89.506 - - type: mrr_at_100 - value: 89.574 - - type: mrr_at_1000 - value: 89.575 - - type: mrr_at_3 - value: 88.991 - - type: mrr_at_5 - value: 89.349 - - type: ndcg_at_1 - value: 83.003 - - type: ndcg_at_10 - value: 88.351 - - type: ndcg_at_100 - value: 89.128 - - type: ndcg_at_1000 - value: 89.34100000000001 - - type: ndcg_at_3 - value: 86.92 - - type: ndcg_at_5 - value: 87.78200000000001 - - type: precision_at_1 - value: 83.003 - - type: precision_at_10 - value: 10.517999999999999 - - type: precision_at_100 - value: 1.115 - - type: precision_at_1000 - value: 0.11499999999999999 - - type: precision_at_3 - value: 33.062999999999995 - - type: precision_at_5 - value: 20.498 - - type: recall_at_1 - value: 76.893 - - type: recall_at_10 - value: 94.374 - - type: recall_at_100 - value: 97.409 - - type: recall_at_1000 - value: 98.687 - - type: recall_at_3 - value: 90.513 - - type: recall_at_5 - value: 92.709 - - task: - type: Retrieval - dataset: - type: fiqa - name: MTEB FiQA2018 - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 20.829 - - type: map_at_10 - value: 32.86 - - type: map_at_100 - value: 34.838 - - type: map_at_1000 - value: 35.006 - - type: map_at_3 - value: 28.597 - - type: map_at_5 - value: 31.056 - - type: mrr_at_1 - value: 41.358 - - type: mrr_at_10 - value: 49.542 - - type: mrr_at_100 - value: 50.29900000000001 - - type: mrr_at_1000 - value: 50.334999999999994 - - type: mrr_at_3 - value: 46.579 - - type: mrr_at_5 - value: 48.408 - - type: ndcg_at_1 - value: 41.358 - - type: ndcg_at_10 - value: 40.758 - - type: ndcg_at_100 - value: 47.799 - - type: ndcg_at_1000 - value: 50.589 - - type: ndcg_at_3 - value: 36.695 - - type: ndcg_at_5 - value: 38.193 - - type: precision_at_1 - value: 41.358 - - type: precision_at_10 - value: 11.142000000000001 - - type: precision_at_100 - value: 1.8350000000000002 - - type: precision_at_1000 - value: 0.234 - - type: precision_at_3 - value: 24.023 - - type: precision_at_5 - value: 17.963 - - type: recall_at_1 - value: 20.829 - - type: recall_at_10 - value: 47.467999999999996 - - type: recall_at_100 - value: 73.593 - - type: recall_at_1000 - value: 90.122 - - type: recall_at_3 - value: 32.74 - - type: recall_at_5 - value: 39.608 - - task: - type: Retrieval - dataset: - type: hotpotqa - name: MTEB HotpotQA - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 40.324 - - type: map_at_10 - value: 64.183 - - type: map_at_100 - value: 65.037 - - type: map_at_1000 - value: 65.094 - - type: map_at_3 - value: 60.663 - - type: map_at_5 - value: 62.951 - - type: mrr_at_1 - value: 80.648 - - type: mrr_at_10 - value: 86.005 - - type: mrr_at_100 - value: 86.157 - - type: mrr_at_1000 - value: 86.162 - - type: mrr_at_3 - value: 85.116 - - type: mrr_at_5 - value: 85.703 - - type: ndcg_at_1 - value: 80.648 - - type: ndcg_at_10 - value: 72.351 - - type: ndcg_at_100 - value: 75.279 - - type: ndcg_at_1000 - value: 76.357 - - type: ndcg_at_3 - value: 67.484 - - type: ndcg_at_5 - value: 70.31500000000001 - - type: precision_at_1 - value: 80.648 - - type: precision_at_10 - value: 15.103 - - type: precision_at_100 - value: 1.7399999999999998 - - type: precision_at_1000 - value: 0.188 - - type: precision_at_3 - value: 43.232 - - type: precision_at_5 - value: 28.165000000000003 - - type: recall_at_1 - value: 40.324 - - type: recall_at_10 - value: 75.517 - - type: recall_at_100 - value: 86.982 - - type: recall_at_1000 - value: 94.072 - - type: recall_at_3 - value: 64.848 - - type: recall_at_5 - value: 70.41199999999999 - - task: - type: Classification - dataset: - type: mteb/imdb - name: MTEB ImdbClassification - config: default - split: test - revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 - metrics: - - type: accuracy - value: 91.4 - - type: ap - value: 87.4422032289312 - - type: f1 - value: 91.39249564302281 - - task: - type: Retrieval - dataset: - type: msmarco - name: MTEB MSMARCO - config: default - split: dev - revision: None - metrics: - - type: map_at_1 - value: 22.03 - - type: map_at_10 - value: 34.402 - - type: map_at_100 - value: 35.599 - - type: map_at_1000 - value: 35.648 - - type: map_at_3 - value: 30.603 - - type: map_at_5 - value: 32.889 - - type: mrr_at_1 - value: 22.679 - - type: mrr_at_10 - value: 35.021 - - type: mrr_at_100 - value: 36.162 - - type: mrr_at_1000 - value: 36.205 - - type: mrr_at_3 - value: 31.319999999999997 - - type: mrr_at_5 - value: 33.562 - - type: ndcg_at_1 - value: 22.692999999999998 - - type: ndcg_at_10 - value: 41.258 - - type: ndcg_at_100 - value: 46.967 - - type: ndcg_at_1000 - value: 48.175000000000004 - - type: ndcg_at_3 - value: 33.611000000000004 - - type: ndcg_at_5 - value: 37.675 - - type: precision_at_1 - value: 22.692999999999998 - - type: precision_at_10 - value: 6.5089999999999995 - - type: precision_at_100 - value: 0.936 - - type: precision_at_1000 - value: 0.104 - - type: precision_at_3 - value: 14.413 - - type: precision_at_5 - value: 10.702 - - type: recall_at_1 - value: 22.03 - - type: recall_at_10 - value: 62.248000000000005 - - type: recall_at_100 - value: 88.524 - - type: recall_at_1000 - value: 97.714 - - type: recall_at_3 - value: 41.617 - - type: recall_at_5 - value: 51.359 - - task: - type: Classification - dataset: - type: mteb/mtop_domain - name: MTEB MTOPDomainClassification (en) - config: en - split: test - revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf - metrics: - - type: accuracy - value: 94.36844505243957 - - type: f1 - value: 94.12408743818202 - - task: - type: Classification - dataset: - type: mteb/mtop_intent - name: MTEB MTOPIntentClassification (en) - config: en - split: test - revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba - metrics: - - type: accuracy - value: 76.43410852713177 - - type: f1 - value: 58.501855709435624 - - task: - type: Classification - dataset: - type: mteb/amazon_massive_intent - name: MTEB MassiveIntentClassification (en) - config: en - split: test - revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 - metrics: - - type: accuracy - value: 76.04909213180902 - - type: f1 - value: 74.1800860395823 - - task: - type: Classification - dataset: - type: mteb/amazon_massive_scenario - name: MTEB MassiveScenarioClassification (en) - config: en - split: test - revision: 7d571f92784cd94a019292a1f45445077d0ef634 - metrics: - - type: accuracy - value: 79.76126429051781 - - type: f1 - value: 79.85705217473232 - - task: - type: Clustering - dataset: - type: mteb/medrxiv-clustering-p2p - name: MTEB MedrxivClusteringP2P - config: default - split: test - revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 - metrics: - - type: v_measure - value: 34.70119520292863 - - task: - type: Clustering - dataset: - type: mteb/medrxiv-clustering-s2s - name: MTEB MedrxivClusteringS2S - config: default - split: test - revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 - metrics: - - type: v_measure - value: 32.33544316467486 - - task: - type: Reranking - dataset: - type: mteb/mind_small - name: MTEB MindSmallReranking - config: default - split: test - revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 - metrics: - - type: map - value: 30.75499243990726 - - type: mrr - value: 31.70602251821063 - - task: - type: Retrieval - dataset: - type: nfcorpus - name: MTEB NFCorpus - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 6.451999999999999 - - type: map_at_10 - value: 13.918 - - type: map_at_100 - value: 17.316000000000003 - - type: map_at_1000 - value: 18.747 - - type: map_at_3 - value: 10.471 - - type: map_at_5 - value: 12.104 - - type: mrr_at_1 - value: 46.749 - - type: mrr_at_10 - value: 55.717000000000006 - - type: mrr_at_100 - value: 56.249 - - type: mrr_at_1000 - value: 56.288000000000004 - - type: mrr_at_3 - value: 53.818 - - type: mrr_at_5 - value: 55.103 - - type: ndcg_at_1 - value: 45.201 - - type: ndcg_at_10 - value: 35.539 - - type: ndcg_at_100 - value: 32.586 - - type: ndcg_at_1000 - value: 41.486000000000004 - - type: ndcg_at_3 - value: 41.174 - - type: ndcg_at_5 - value: 38.939 - - type: precision_at_1 - value: 46.749 - - type: precision_at_10 - value: 25.944 - - type: precision_at_100 - value: 8.084 - - type: precision_at_1000 - value: 2.076 - - type: precision_at_3 - value: 38.7 - - type: precision_at_5 - value: 33.56 - - type: recall_at_1 - value: 6.451999999999999 - - type: recall_at_10 - value: 17.302 - - type: recall_at_100 - value: 32.14 - - type: recall_at_1000 - value: 64.12 - - type: recall_at_3 - value: 11.219 - - type: recall_at_5 - value: 13.993 - - task: - type: Retrieval - dataset: - type: nq - name: MTEB NQ - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 32.037 - - type: map_at_10 - value: 46.565 - - type: map_at_100 - value: 47.606 - - type: map_at_1000 - value: 47.636 - - type: map_at_3 - value: 42.459 - - type: map_at_5 - value: 44.762 - - type: mrr_at_1 - value: 36.181999999999995 - - type: mrr_at_10 - value: 49.291000000000004 - - type: mrr_at_100 - value: 50.059 - - type: mrr_at_1000 - value: 50.078 - - type: mrr_at_3 - value: 45.829 - - type: mrr_at_5 - value: 47.797 - - type: ndcg_at_1 - value: 36.153 - - type: ndcg_at_10 - value: 53.983000000000004 - - type: ndcg_at_100 - value: 58.347 - - type: ndcg_at_1000 - value: 59.058 - - type: ndcg_at_3 - value: 46.198 - - type: ndcg_at_5 - value: 50.022 - - type: precision_at_1 - value: 36.153 - - type: precision_at_10 - value: 8.763 - - type: precision_at_100 - value: 1.123 - - type: precision_at_1000 - value: 0.11900000000000001 - - type: precision_at_3 - value: 20.751 - - type: precision_at_5 - value: 14.646999999999998 - - type: recall_at_1 - value: 32.037 - - type: recall_at_10 - value: 74.008 - - type: recall_at_100 - value: 92.893 - - type: recall_at_1000 - value: 98.16 - - type: recall_at_3 - value: 53.705999999999996 - - type: recall_at_5 - value: 62.495 - - task: - type: Retrieval - dataset: - type: quora - name: MTEB QuoraRetrieval - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 71.152 - - type: map_at_10 - value: 85.104 - - type: map_at_100 - value: 85.745 - - type: map_at_1000 - value: 85.761 - - type: map_at_3 - value: 82.175 - - type: map_at_5 - value: 84.066 - - type: mrr_at_1 - value: 82.03 - - type: mrr_at_10 - value: 88.115 - - type: mrr_at_100 - value: 88.21 - - type: mrr_at_1000 - value: 88.211 - - type: mrr_at_3 - value: 87.19200000000001 - - type: mrr_at_5 - value: 87.85 - - type: ndcg_at_1 - value: 82.03 - - type: ndcg_at_10 - value: 88.78 - - type: ndcg_at_100 - value: 89.96300000000001 - - type: ndcg_at_1000 - value: 90.056 - - type: ndcg_at_3 - value: 86.051 - - type: ndcg_at_5 - value: 87.63499999999999 - - type: precision_at_1 - value: 82.03 - - type: precision_at_10 - value: 13.450000000000001 - - type: precision_at_100 - value: 1.5310000000000001 - - type: precision_at_1000 - value: 0.157 - - type: precision_at_3 - value: 37.627 - - type: precision_at_5 - value: 24.784 - - type: recall_at_1 - value: 71.152 - - type: recall_at_10 - value: 95.649 - - type: recall_at_100 - value: 99.58200000000001 - - type: recall_at_1000 - value: 99.981 - - type: recall_at_3 - value: 87.767 - - type: recall_at_5 - value: 92.233 - - task: - type: Clustering - dataset: - type: mteb/reddit-clustering - name: MTEB RedditClustering - config: default - split: test - revision: 24640382cdbf8abc73003fb0fa6d111a705499eb - metrics: - - type: v_measure - value: 56.48713646277477 - - task: - type: Clustering - dataset: - type: mteb/reddit-clustering-p2p - name: MTEB RedditClusteringP2P - config: default - split: test - revision: 282350215ef01743dc01b456c7f5241fa8937f16 - metrics: - - type: v_measure - value: 63.394940772438545 - - task: - type: Retrieval - dataset: - type: scidocs - name: MTEB SCIDOCS - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 5.043 - - type: map_at_10 - value: 12.949 - - type: map_at_100 - value: 15.146 - - type: map_at_1000 - value: 15.495000000000001 - - type: map_at_3 - value: 9.333 - - type: map_at_5 - value: 11.312999999999999 - - type: mrr_at_1 - value: 24.9 - - type: mrr_at_10 - value: 35.958 - - type: mrr_at_100 - value: 37.152 - - type: mrr_at_1000 - value: 37.201 - - type: mrr_at_3 - value: 32.667 - - type: mrr_at_5 - value: 34.567 - - type: ndcg_at_1 - value: 24.9 - - type: ndcg_at_10 - value: 21.298000000000002 - - type: ndcg_at_100 - value: 29.849999999999998 - - type: ndcg_at_1000 - value: 35.506 - - type: ndcg_at_3 - value: 20.548 - - type: ndcg_at_5 - value: 18.064 - - type: precision_at_1 - value: 24.9 - - type: precision_at_10 - value: 10.9 - - type: precision_at_100 - value: 2.331 - - type: precision_at_1000 - value: 0.367 - - type: precision_at_3 - value: 19.267 - - type: precision_at_5 - value: 15.939999999999998 - - type: recall_at_1 - value: 5.043 - - type: recall_at_10 - value: 22.092 - - type: recall_at_100 - value: 47.323 - - type: recall_at_1000 - value: 74.553 - - type: recall_at_3 - value: 11.728 - - type: recall_at_5 - value: 16.188 - - task: - type: STS - dataset: - type: mteb/sickr-sts - name: MTEB SICK-R - config: default - split: test - revision: a6ea5a8cab320b040a23452cc28066d9beae2cee - metrics: - - type: cos_sim_pearson - value: 83.7007085938325 - - type: cos_sim_spearman - value: 80.0171084446234 - - type: euclidean_pearson - value: 81.28133218355893 - - type: euclidean_spearman - value: 79.99291731740131 - - type: manhattan_pearson - value: 81.22926922327846 - - type: manhattan_spearman - value: 79.94444878127038 - - task: - type: STS - dataset: - type: mteb/sts12-sts - name: MTEB STS12 - config: default - split: test - revision: a0d554a64d88156834ff5ae9920b964011b16384 - metrics: - - type: cos_sim_pearson - value: 85.7411883252923 - - type: cos_sim_spearman - value: 77.93462937801245 - - type: euclidean_pearson - value: 83.00858563882404 - - type: euclidean_spearman - value: 77.82717362433257 - - type: manhattan_pearson - value: 82.92887645790769 - - type: manhattan_spearman - value: 77.78807488222115 - - task: - type: STS - dataset: - type: mteb/sts13-sts - name: MTEB STS13 - config: default - split: test - revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca - metrics: - - type: cos_sim_pearson - value: 82.04222459361023 - - type: cos_sim_spearman - value: 83.85931509330395 - - type: euclidean_pearson - value: 83.26916063876055 - - type: euclidean_spearman - value: 83.98621985648353 - - type: manhattan_pearson - value: 83.14935679184327 - - type: manhattan_spearman - value: 83.87938828586304 - - task: - type: STS - dataset: - type: mteb/sts14-sts - name: MTEB STS14 - config: default - split: test - revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 - metrics: - - type: cos_sim_pearson - value: 81.41136639535318 - - type: cos_sim_spearman - value: 81.51200091040481 - - type: euclidean_pearson - value: 81.45382456114775 - - type: euclidean_spearman - value: 81.46201181707931 - - type: manhattan_pearson - value: 81.37243088439584 - - type: manhattan_spearman - value: 81.39828421893426 - - task: - type: STS - dataset: - type: mteb/sts15-sts - name: MTEB STS15 - config: default - split: test - revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 - metrics: - - type: cos_sim_pearson - value: 85.71942451732227 - - type: cos_sim_spearman - value: 87.33044482064973 - - type: euclidean_pearson - value: 86.58580899365178 - - type: euclidean_spearman - value: 87.09206723832895 - - type: manhattan_pearson - value: 86.47460784157013 - - type: manhattan_spearman - value: 86.98367656583076 - - task: - type: STS - dataset: - type: mteb/sts16-sts - name: MTEB STS16 - config: default - split: test - revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 - metrics: - - type: cos_sim_pearson - value: 83.55868078863449 - - type: cos_sim_spearman - value: 85.38299230074065 - - type: euclidean_pearson - value: 84.64715256244595 - - type: euclidean_spearman - value: 85.49112229604047 - - type: manhattan_pearson - value: 84.60814346792462 - - type: manhattan_spearman - value: 85.44886026766822 - - task: - type: STS - dataset: - type: mteb/sts17-crosslingual-sts - name: MTEB STS17 (en-en) - config: en-en - split: test - revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d - metrics: - - type: cos_sim_pearson - value: 84.99292526370614 - - type: cos_sim_spearman - value: 85.58139465695983 - - type: euclidean_pearson - value: 86.51325066734084 - - type: euclidean_spearman - value: 85.56736418284562 - - type: manhattan_pearson - value: 86.48190836601357 - - type: manhattan_spearman - value: 85.51616256224258 - - task: - type: STS - dataset: - type: mteb/sts22-crosslingual-sts - name: MTEB STS22 (en) - config: en - split: test - revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 - metrics: - - type: cos_sim_pearson - value: 64.54124715078807 - - type: cos_sim_spearman - value: 65.32134275948374 - - type: euclidean_pearson - value: 67.09791698300816 - - type: euclidean_spearman - value: 65.79468982468465 - - type: manhattan_pearson - value: 67.13304723693966 - - type: manhattan_spearman - value: 65.68439995849283 - - task: - type: STS - dataset: - type: mteb/stsbenchmark-sts - name: MTEB STSBenchmark - config: default - split: test - revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 - metrics: - - type: cos_sim_pearson - value: 83.4231099581624 - - type: cos_sim_spearman - value: 85.95475815226862 - - type: euclidean_pearson - value: 85.00339401999706 - - type: euclidean_spearman - value: 85.74133081802971 - - type: manhattan_pearson - value: 85.00407987181666 - - type: manhattan_spearman - value: 85.77509596397363 - - task: - type: Reranking - dataset: - type: mteb/scidocs-reranking - name: MTEB SciDocsRR - config: default - split: test - revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab - metrics: - - type: map - value: 87.25666719585716 - - type: mrr - value: 96.32769917083642 - - task: - type: Retrieval - dataset: - type: scifact - name: MTEB SciFact - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 57.828 - - type: map_at_10 - value: 68.369 - - type: map_at_100 - value: 68.83399999999999 - - type: map_at_1000 - value: 68.856 - - type: map_at_3 - value: 65.38000000000001 - - type: map_at_5 - value: 67.06299999999999 - - type: mrr_at_1 - value: 61 - - type: mrr_at_10 - value: 69.45400000000001 - - type: mrr_at_100 - value: 69.785 - - type: mrr_at_1000 - value: 69.807 - - type: mrr_at_3 - value: 67 - - type: mrr_at_5 - value: 68.43299999999999 - - type: ndcg_at_1 - value: 61 - - type: ndcg_at_10 - value: 73.258 - - type: ndcg_at_100 - value: 75.173 - - type: ndcg_at_1000 - value: 75.696 - - type: ndcg_at_3 - value: 68.162 - - type: ndcg_at_5 - value: 70.53399999999999 - - type: precision_at_1 - value: 61 - - type: precision_at_10 - value: 9.8 - - type: precision_at_100 - value: 1.087 - - type: precision_at_1000 - value: 0.11299999999999999 - - type: precision_at_3 - value: 27 - - type: precision_at_5 - value: 17.666999999999998 - - type: recall_at_1 - value: 57.828 - - type: recall_at_10 - value: 87.122 - - type: recall_at_100 - value: 95.667 - - type: recall_at_1000 - value: 99.667 - - type: recall_at_3 - value: 73.139 - - type: recall_at_5 - value: 79.361 - - task: - type: PairClassification - dataset: - type: mteb/sprintduplicatequestions-pairclassification - name: MTEB SprintDuplicateQuestions - config: default - split: test - revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 - metrics: - - type: cos_sim_accuracy - value: 99.85247524752475 - - type: cos_sim_ap - value: 96.25640197639723 - - type: cos_sim_f1 - value: 92.37851662404091 - - type: cos_sim_precision - value: 94.55497382198953 - - type: cos_sim_recall - value: 90.3 - - type: dot_accuracy - value: 99.76138613861386 - - type: dot_ap - value: 93.40295864389073 - - type: dot_f1 - value: 87.64267990074441 - - type: dot_precision - value: 86.99507389162562 - - type: dot_recall - value: 88.3 - - type: euclidean_accuracy - value: 99.85049504950496 - - type: euclidean_ap - value: 96.24254350525462 - - type: euclidean_f1 - value: 92.32323232323232 - - type: euclidean_precision - value: 93.26530612244898 - - type: euclidean_recall - value: 91.4 - - type: manhattan_accuracy - value: 99.85346534653465 - - type: manhattan_ap - value: 96.2635334753325 - - type: manhattan_f1 - value: 92.37899073120495 - - type: manhattan_precision - value: 95.22292993630573 - - type: manhattan_recall - value: 89.7 - - type: max_accuracy - value: 99.85346534653465 - - type: max_ap - value: 96.2635334753325 - - type: max_f1 - value: 92.37899073120495 - - task: - type: Clustering - dataset: - type: mteb/stackexchange-clustering - name: MTEB StackExchangeClustering - config: default - split: test - revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 - metrics: - - type: v_measure - value: 65.83905786483794 - - task: - type: Clustering - dataset: - type: mteb/stackexchange-clustering-p2p - name: MTEB StackExchangeClusteringP2P - config: default - split: test - revision: 815ca46b2622cec33ccafc3735d572c266efdb44 - metrics: - - type: v_measure - value: 35.031896152126436 - - task: - type: Reranking - dataset: - type: mteb/stackoverflowdupquestions-reranking - name: MTEB StackOverflowDupQuestions - config: default - split: test - revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 - metrics: - - type: map - value: 54.551326709447146 - - type: mrr - value: 55.43758222986165 - - task: - type: Summarization - dataset: - type: mteb/summeval - name: MTEB SummEval - config: default - split: test - revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c - metrics: - - type: cos_sim_pearson - value: 30.305688567308874 - - type: cos_sim_spearman - value: 29.27135743434515 - - type: dot_pearson - value: 30.336741878796563 - - type: dot_spearman - value: 30.513365725895937 - - task: - type: Retrieval - dataset: - type: trec-covid - name: MTEB TRECCOVID - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 0.245 - - type: map_at_10 - value: 1.92 - - type: map_at_100 - value: 10.519 - - type: map_at_1000 - value: 23.874000000000002 - - type: map_at_3 - value: 0.629 - - type: map_at_5 - value: 1.0290000000000001 - - type: mrr_at_1 - value: 88 - - type: mrr_at_10 - value: 93.5 - - type: mrr_at_100 - value: 93.5 - - type: mrr_at_1000 - value: 93.5 - - type: mrr_at_3 - value: 93 - - type: mrr_at_5 - value: 93.5 - - type: ndcg_at_1 - value: 84 - - type: ndcg_at_10 - value: 76.447 - - type: ndcg_at_100 - value: 56.516 - - type: ndcg_at_1000 - value: 48.583999999999996 - - type: ndcg_at_3 - value: 78.877 - - type: ndcg_at_5 - value: 79.174 - - type: precision_at_1 - value: 88 - - type: precision_at_10 - value: 80.60000000000001 - - type: precision_at_100 - value: 57.64 - - type: precision_at_1000 - value: 21.227999999999998 - - type: precision_at_3 - value: 82 - - type: precision_at_5 - value: 83.6 - - type: recall_at_1 - value: 0.245 - - type: recall_at_10 - value: 2.128 - - type: recall_at_100 - value: 13.767 - - type: recall_at_1000 - value: 44.958 - - type: recall_at_3 - value: 0.654 - - type: recall_at_5 - value: 1.111 - - task: - type: Retrieval - dataset: - type: webis-touche2020 - name: MTEB Touche2020 - config: default - split: test - revision: None - metrics: - - type: map_at_1 - value: 2.5170000000000003 - - type: map_at_10 - value: 10.915 - - type: map_at_100 - value: 17.535 - - type: map_at_1000 - value: 19.042 - - type: map_at_3 - value: 5.689 - - type: map_at_5 - value: 7.837 - - type: mrr_at_1 - value: 34.694 - - type: mrr_at_10 - value: 49.547999999999995 - - type: mrr_at_100 - value: 50.653000000000006 - - type: mrr_at_1000 - value: 50.653000000000006 - - type: mrr_at_3 - value: 44.558 - - type: mrr_at_5 - value: 48.333 - - type: ndcg_at_1 - value: 32.653 - - type: ndcg_at_10 - value: 26.543 - - type: ndcg_at_100 - value: 38.946 - - type: ndcg_at_1000 - value: 49.406 - - type: ndcg_at_3 - value: 29.903000000000002 - - type: ndcg_at_5 - value: 29.231 - - type: precision_at_1 - value: 34.694 - - type: precision_at_10 - value: 23.265 - - type: precision_at_100 - value: 8.102 - - type: precision_at_1000 - value: 1.5 - - type: precision_at_3 - value: 31.293 - - type: precision_at_5 - value: 29.796 - - type: recall_at_1 - value: 2.5170000000000003 - - type: recall_at_10 - value: 16.88 - - type: recall_at_100 - value: 49.381 - - type: recall_at_1000 - value: 81.23899999999999 - - type: recall_at_3 - value: 6.965000000000001 - - type: recall_at_5 - value: 10.847999999999999 - - task: - type: Classification - dataset: - type: mteb/toxic_conversations_50k - name: MTEB ToxicConversationsClassification - config: default - split: test - revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c - metrics: - - type: accuracy - value: 71.5942 - - type: ap - value: 13.92074156956546 - - type: f1 - value: 54.671999698839066 - - task: - type: Classification - dataset: - type: mteb/tweet_sentiment_extraction - name: MTEB TweetSentimentExtractionClassification - config: default - split: test - revision: d604517c81ca91fe16a244d1248fc021f9ecee7a - metrics: - - type: accuracy - value: 59.39728353140916 - - type: f1 - value: 59.68980496759517 - - task: - type: Clustering - dataset: - type: mteb/twentynewsgroups-clustering - name: MTEB TwentyNewsgroupsClustering - config: default - split: test - revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 - metrics: - - type: v_measure - value: 52.11181870104935 - - task: - type: PairClassification - dataset: - type: mteb/twittersemeval2015-pairclassification - name: MTEB TwitterSemEval2015 - config: default - split: test - revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 - metrics: - - type: cos_sim_accuracy - value: 86.46957143708649 - - type: cos_sim_ap - value: 76.16120197845457 - - type: cos_sim_f1 - value: 69.69919295671315 - - type: cos_sim_precision - value: 64.94986326344576 - - type: cos_sim_recall - value: 75.19788918205805 - - type: dot_accuracy - value: 83.0780234845324 - - type: dot_ap - value: 64.21717343541934 - - type: dot_f1 - value: 59.48375497624245 - - type: dot_precision - value: 57.94345759319489 - - type: dot_recall - value: 61.108179419525065 - - type: euclidean_accuracy - value: 86.6543482148179 - - type: euclidean_ap - value: 76.4527555010203 - - type: euclidean_f1 - value: 70.10156056477584 - - type: euclidean_precision - value: 66.05975723622782 - - type: euclidean_recall - value: 74.67018469656992 - - type: manhattan_accuracy - value: 86.66030875603504 - - type: manhattan_ap - value: 76.40304567255436 - - type: manhattan_f1 - value: 70.05275426328058 - - type: manhattan_precision - value: 65.4666360926393 - - type: manhattan_recall - value: 75.32981530343008 - - type: max_accuracy - value: 86.66030875603504 - - type: max_ap - value: 76.4527555010203 - - type: max_f1 - value: 70.10156056477584 - - task: - type: PairClassification - dataset: - type: mteb/twitterurlcorpus-pairclassification - name: MTEB TwitterURLCorpus - config: default - split: test - revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf - metrics: - - type: cos_sim_accuracy - value: 88.42123646524624 - - type: cos_sim_ap - value: 85.15431437761646 - - type: cos_sim_f1 - value: 76.98069301530742 - - type: cos_sim_precision - value: 72.9314502239063 - - type: cos_sim_recall - value: 81.50600554357868 - - type: dot_accuracy - value: 86.70974502270346 - - type: dot_ap - value: 80.77621563599457 - - type: dot_f1 - value: 73.87058697285117 - - type: dot_precision - value: 68.98256396552877 - - type: dot_recall - value: 79.50415768401602 - - type: euclidean_accuracy - value: 88.46392672798541 - - type: euclidean_ap - value: 85.20370297495491 - - type: euclidean_f1 - value: 77.01372369624886 - - type: euclidean_precision - value: 73.39052800446397 - - type: euclidean_recall - value: 81.01324299353249 - - type: manhattan_accuracy - value: 88.43481973066325 - - type: manhattan_ap - value: 85.16318289864545 - - type: manhattan_f1 - value: 76.90884877182597 - - type: manhattan_precision - value: 74.01737396753062 - - type: manhattan_recall - value: 80.03541730828458 - - type: max_accuracy - value: 88.46392672798541 - - type: max_ap - value: 85.20370297495491 - - type: max_f1 - value: 77.01372369624886 -license: mit -language: -- en ---- +- sentence-transformers +- sentence-similarity +- feature-extraction +- generated_from_trainer +- dataset_size:208 +- loss:BatchSemiHardTripletLoss +base_model: BAAI/bge-base-en +widget: +- source_sentence: ' + Name : Vigilant Protec -**Recommend switching to newest [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5), which has more reasonable similarity distribution and same method of usage.** + Category: Consulting Services, Cybersecurity Solutions -
- Model List | - FAQ | - Usage | - Evaluation | - Train | - Contact | - Citation | - License -
-
+ Amount: 1987.65
-More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
+ Card: Global Compliance Enhancement
+ Trip Name: unknown
-[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
+ '
+ sentences:
+ - '
-FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
-And it also can be used in vector databases for LLMs.
+ Name : Rosetta Tech
-************* 🌟**Updates**🌟 *************
-- 10/12/2023: Release [LLM-Embedder](./FlagEmbedding/llm_embedder/README.md), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Paper](https://arxiv.org/pdf/2310.07554.pdf) :fire:
-- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
-- 09/15/2023: The [masive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
-- 09/12/2023: New models:
- - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
- - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
-
+ Category: Technology Supplies, Software Solutions
-More
-
-
-- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
-- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
-- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
-- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
-- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
-
-1. How to fine-tune bge embedding model?
+ Card: Creative Work Environment Initiative
-
-Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
-Some suggestions:
-- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
-- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
-- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
+ Trip Name: unknown
-
-2. The similarity score between two dissimilar sentences is higher than 0.5
+ Name : Analytix Global Solutions
-
-**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
+ Category: Business Intelligence Services, Regulatory Compliance Tools
-Since we finetune the models by contrastive learning with a temperature of 0.01,
-the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
-So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
+ Department: Finance
-For downstream tasks, such as passage retrieval or semantic similarity,
-**what matters is the relative order of the scores, not the absolute value.**
-If you need to filter similar sentences based on a similarity threshold,
-please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
+ Location: London, UK
-3. When does the query instruction need to be used
+ Card: Financial Compliance Enhancement
-
+ Trip Name: unknown
-For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
-No instruction only has a slight degradation in retrieval performance compared with using instruction.
-So you can generate embedding without instruction in all cases for convenience.
-
-For a retrieval task that uses short queries to find long related documents,
-it is recommended to add instructions for these short queries.
-**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
-In all cases, the documents/passages do not need to add the instruction.
+ '
+- source_sentence: '
-TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
+
+| Metric | Value |
+|:-------------------|:--------|
+| cosine_accuracy | 0.0 |
+| dot_accuracy | 0.0 |
+| manhattan_accuracy | 0.0 |
+| euclidean_accuracy | 0.0 |
+| **max_accuracy** | **0.0** |
+
+#### Triplet
+* Dataset: `bge-base-en-eval`
+* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
+
+| Metric | Value |
+|:-------------------|:--------|
+| cosine_accuracy | 0.0 |
+| dot_accuracy | 0.0 |
+| manhattan_accuracy | 0.0 |
+| euclidean_accuracy | 0.0 |
+| **max_accuracy** | **0.0** |
+
+
+
+
+
+## Training Details
+
+### Training Dataset
+
+#### Unnamed Dataset
+
+
+* Size: 208 training samples
+* Columns: sentence
and label
+* Approximate statistics based on the first 208 samples:
+ | | sentence | label |
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
+ | type | string | int |
+ | details |
Name : Global Insights Group
Category: Subscriptions & Memberships, Data Services & Analytics
Department: Marketing
Location: London, UK
Amount: 1245.67
Card: Marketing Intelligence Fund
Trip Name: unknown
| 0
|
+ |
Name : CyberGuard Provisions
Category: Security Software Solutions, Data Protection Services
Department: Information Security
Location: San Francisco, CA
Amount: 879.92
Card: Digital Fortress Action Plan
Trip Name: unknown
| 1
|
+ |
Name : Apex Innovations Group
Category: Business Consulting, Training Services
Department: Executive
Location: Sydney, Australia
Amount: 1575.34
Card: Leadership Development Program
Trip Name: unknown
| 2
|
+* Loss: [BatchSemiHardTripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
+
+### Evaluation Dataset
+
+#### Unnamed Dataset
+
+
+* Size: 52 evaluation samples
+* Columns: sentence
and label
+* Approximate statistics based on the first 52 samples:
+ | | sentence | label |
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
+ | type | string | int |
+ | details |
Name : Viacom Solutions
Category: Telecom Hardware, Network Architecture
Department: Engineering
Location: Tokyo, Japan
Amount: 1450.67
Card: Global Network Optimization Project
Trip Name: unknown
| 9
|
+ |
Name : Vista Cascades Resort
Category: Hospitality, Event Hosting
Department: Sales
Location: Orlando, FL
Amount: 1823.45
Card: Annual Sales Retreat
Trip Name: Q3 Strategy Session
| 12
|
+ |
Name : ActiveHealth CoLab
Category: Health Services, Wellness Solutions
Department: HR
Location: Amsterdam, Netherlands
Amount: 745.32
Card: Corporate Wellness Partnership
Trip Name: unknown
| 23
|
+* Loss: [BatchSemiHardTripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
+
+### Training Hyperparameters
+#### Non-Default Hyperparameters
+
+- `eval_strategy`: steps
+- `per_device_train_batch_size`: 16
+- `per_device_eval_batch_size`: 16
+- `learning_rate`: 2e-05
+- `num_train_epochs`: 5
+- `warmup_ratio`: 0.1
+- `fp16`: True
+- `batch_sampler`: no_duplicates
+
+#### All Hyperparameters
+