Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +774 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,774 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:208
|
8 |
+
- loss:BatchSemiHardTripletLoss
|
9 |
+
base_model: BAAI/bge-base-en
|
10 |
+
widget:
|
11 |
+
- source_sentence: '
|
12 |
+
|
13 |
+
Name : Vigilant Protec
|
14 |
+
|
15 |
+
Category: Consulting Services, Cybersecurity Solutions
|
16 |
+
|
17 |
+
Department: Legal
|
18 |
+
|
19 |
+
Location: London, UK
|
20 |
+
|
21 |
+
Amount: 1987.65
|
22 |
+
|
23 |
+
Card: Global Compliance Enhancement
|
24 |
+
|
25 |
+
Trip Name: unknown
|
26 |
+
|
27 |
+
'
|
28 |
+
sentences:
|
29 |
+
- '
|
30 |
+
|
31 |
+
Name : Rosetta Tech
|
32 |
+
|
33 |
+
Category: Technology Supplies, Software Solutions
|
34 |
+
|
35 |
+
Department: Research & Development
|
36 |
+
|
37 |
+
Location: Hamburg, Germany
|
38 |
+
|
39 |
+
Amount: 2129.49
|
40 |
+
|
41 |
+
Card: Advanced Research Toolkit Acquisition
|
42 |
+
|
43 |
+
Trip Name: unknown
|
44 |
+
|
45 |
+
'
|
46 |
+
- '
|
47 |
+
|
48 |
+
Name : Ikebana Studio
|
49 |
+
|
50 |
+
Category: Office Decor Services, Art Supplies
|
51 |
+
|
52 |
+
Department: All Departments
|
53 |
+
|
54 |
+
Location: Kyoto, Japan
|
55 |
+
|
56 |
+
Amount: 789.45
|
57 |
+
|
58 |
+
Card: Creative Work Environment Initiative
|
59 |
+
|
60 |
+
Trip Name: unknown
|
61 |
+
|
62 |
+
'
|
63 |
+
- '
|
64 |
+
|
65 |
+
Name : Analytix Global Solutions
|
66 |
+
|
67 |
+
Category: Business Intelligence Services, Regulatory Compliance Tools
|
68 |
+
|
69 |
+
Department: Finance
|
70 |
+
|
71 |
+
Location: London, UK
|
72 |
+
|
73 |
+
Amount: 1323.67
|
74 |
+
|
75 |
+
Card: Financial Compliance Enhancement
|
76 |
+
|
77 |
+
Trip Name: unknown
|
78 |
+
|
79 |
+
'
|
80 |
+
- source_sentence: '
|
81 |
+
|
82 |
+
Name : La Gourmanderie Collective
|
83 |
+
|
84 |
+
Category: Culinary Consulting, Team Building Activities
|
85 |
+
|
86 |
+
Department: Marketing
|
87 |
+
|
88 |
+
Location: Paris, France
|
89 |
+
|
90 |
+
Amount: 1468.77
|
91 |
+
|
92 |
+
Card: Innovative Cuisine Workshop
|
93 |
+
|
94 |
+
Trip Name: unknown
|
95 |
+
|
96 |
+
'
|
97 |
+
sentences:
|
98 |
+
- '
|
99 |
+
|
100 |
+
Name : Gandalf
|
101 |
+
|
102 |
+
Category: Financial Services, Consulting
|
103 |
+
|
104 |
+
Department: Finance
|
105 |
+
|
106 |
+
Location: Singapore
|
107 |
+
|
108 |
+
Amount: 457.29
|
109 |
+
|
110 |
+
Card: Financial Advisory Services
|
111 |
+
|
112 |
+
Trip Name: unknown
|
113 |
+
|
114 |
+
'
|
115 |
+
- '
|
116 |
+
|
117 |
+
Name : Anthro Insights
|
118 |
+
|
119 |
+
Category: Talent Acquisition Services, Corporate Education Programs
|
120 |
+
|
121 |
+
Department: Human Resource
|
122 |
+
|
123 |
+
Location: London, UK
|
124 |
+
|
125 |
+
Amount: 1440.75
|
126 |
+
|
127 |
+
Card: Diversity & Inclusion
|
128 |
+
|
129 |
+
Trip Name: unknown
|
130 |
+
|
131 |
+
'
|
132 |
+
- '
|
133 |
+
|
134 |
+
Name : Baku
|
135 |
+
|
136 |
+
Category: Ride Sharing
|
137 |
+
|
138 |
+
Department: Sales
|
139 |
+
|
140 |
+
Location: Baku, Azerbaijan
|
141 |
+
|
142 |
+
Amount: 1247.88
|
143 |
+
|
144 |
+
Card: Client Engagement Activities
|
145 |
+
|
146 |
+
Trip Name: unknown
|
147 |
+
|
148 |
+
'
|
149 |
+
- source_sentence: '
|
150 |
+
|
151 |
+
Name : Nimbus Networks Inc.
|
152 |
+
|
153 |
+
Category: Cloud Services, Application Hosting
|
154 |
+
|
155 |
+
Department: Research & Development
|
156 |
+
|
157 |
+
Location: Austin, TX
|
158 |
+
|
159 |
+
Amount: 1134.67
|
160 |
+
|
161 |
+
Card: NextGen Application Deployment
|
162 |
+
|
163 |
+
Trip Name: unknown
|
164 |
+
|
165 |
+
'
|
166 |
+
sentences:
|
167 |
+
- '
|
168 |
+
|
169 |
+
Name : CleverInsight Solutions
|
170 |
+
|
171 |
+
Category: Business Process Optimization
|
172 |
+
|
173 |
+
Department: Finance
|
174 |
+
|
175 |
+
Location: Toronto, Canada
|
176 |
+
|
177 |
+
Amount: 2127.45
|
178 |
+
|
179 |
+
Card: Quarterly Insights & Efficiency Project
|
180 |
+
|
181 |
+
Trip Name: unknown
|
182 |
+
|
183 |
+
'
|
184 |
+
- '
|
185 |
+
|
186 |
+
Name : SynergyBridge
|
187 |
+
|
188 |
+
Category: Customer Experience Software, Revenue Growth Tools
|
189 |
+
|
190 |
+
Department: Sales
|
191 |
+
|
192 |
+
Location: San Francisco, CA
|
193 |
+
|
194 |
+
Amount: 1558.72
|
195 |
+
|
196 |
+
Card: Customer Relationship Enhancement
|
197 |
+
|
198 |
+
Trip Name: unknown
|
199 |
+
|
200 |
+
'
|
201 |
+
- '
|
202 |
+
|
203 |
+
Name : CloudArc
|
204 |
+
|
205 |
+
Category: Cloud Storage Solutions, Internet Services
|
206 |
+
|
207 |
+
Department: Engineering
|
208 |
+
|
209 |
+
Location: Toronto, Canada
|
210 |
+
|
211 |
+
Amount: 1573.63
|
212 |
+
|
213 |
+
Card: Infrastructure Scaling
|
214 |
+
|
215 |
+
Trip Name: unknown
|
216 |
+
|
217 |
+
'
|
218 |
+
- source_sentence: '
|
219 |
+
|
220 |
+
Name : GigaTrend
|
221 |
+
|
222 |
+
Category: Data Services, Cloud Software Solutions
|
223 |
+
|
224 |
+
Department: Research & Development
|
225 |
+
|
226 |
+
Location: London, UK
|
227 |
+
|
228 |
+
Amount: 1345.67
|
229 |
+
|
230 |
+
Card: Data-Driven Innovation Project
|
231 |
+
|
232 |
+
Trip Name: unknown
|
233 |
+
|
234 |
+
'
|
235 |
+
sentences:
|
236 |
+
- '
|
237 |
+
|
238 |
+
Name : Global Wellness Network
|
239 |
+
|
240 |
+
Category: Corporate Wellness Programs, Employee Engagement
|
241 |
+
|
242 |
+
Department: HR
|
243 |
+
|
244 |
+
Location: Berlin, Germany
|
245 |
+
|
246 |
+
Amount: 1285.75
|
247 |
+
|
248 |
+
Card: Wellness and Engagement Program
|
249 |
+
|
250 |
+
Trip Name: unknown
|
251 |
+
|
252 |
+
'
|
253 |
+
- '
|
254 |
+
|
255 |
+
Name : TechXperts Global
|
256 |
+
|
257 |
+
Category: IT Services, Consulting
|
258 |
+
|
259 |
+
Department: IT Operations
|
260 |
+
|
261 |
+
Location: Berlin, Germany
|
262 |
+
|
263 |
+
Amount: 987.49
|
264 |
+
|
265 |
+
Card: Quarterly System Assessment
|
266 |
+
|
267 |
+
Trip Name: unknown
|
268 |
+
|
269 |
+
'
|
270 |
+
- '
|
271 |
+
|
272 |
+
Name : InterStep Insight Reports
|
273 |
+
|
274 |
+
Category: Data Services, Research Publications
|
275 |
+
|
276 |
+
Department: Marketing
|
277 |
+
|
278 |
+
Location: Toronto, Canada
|
279 |
+
|
280 |
+
Amount: 1248.76
|
281 |
+
|
282 |
+
Card: Strategic Market Research
|
283 |
+
|
284 |
+
Trip Name: unknown
|
285 |
+
|
286 |
+
'
|
287 |
+
- source_sentence: '
|
288 |
+
|
289 |
+
Name : Viacom Solutions
|
290 |
+
|
291 |
+
Category: Telecom Hardware, Network Architecture
|
292 |
+
|
293 |
+
Department: Engineering
|
294 |
+
|
295 |
+
Location: Tokyo, Japan
|
296 |
+
|
297 |
+
Amount: 1450.67
|
298 |
+
|
299 |
+
Card: Global Network Optimization Project
|
300 |
+
|
301 |
+
Trip Name: unknown
|
302 |
+
|
303 |
+
'
|
304 |
+
sentences:
|
305 |
+
- '
|
306 |
+
|
307 |
+
Name : CloudMetric Solutions
|
308 |
+
|
309 |
+
Category: Data Analytics, Virtual Infrastructure Management
|
310 |
+
|
311 |
+
Department: Engineering
|
312 |
+
|
313 |
+
Location: Toronto, Canada
|
314 |
+
|
315 |
+
Amount: 1644.75
|
316 |
+
|
317 |
+
Card: Real-Time Resource Monitoring
|
318 |
+
|
319 |
+
Trip Name: unknown
|
320 |
+
|
321 |
+
'
|
322 |
+
- '
|
323 |
+
|
324 |
+
Name : Il Vino e L''Arte
|
325 |
+
|
326 |
+
Category: Culinary Experience, Cultural Event Venue
|
327 |
+
|
328 |
+
Department: Marketing
|
329 |
+
|
330 |
+
Location: Rome, Italy
|
331 |
+
|
332 |
+
Amount: 748.32
|
333 |
+
|
334 |
+
Card: Cultural Engagement Dinner
|
335 |
+
|
336 |
+
Trip Name: unknown
|
337 |
+
|
338 |
+
'
|
339 |
+
- '
|
340 |
+
|
341 |
+
Name : Pardalis Digital
|
342 |
+
|
343 |
+
Category: Data Analytics Platform, Professional Networking Service
|
344 |
+
|
345 |
+
Department: Sales
|
346 |
+
|
347 |
+
Location: Dublin, Ireland
|
348 |
+
|
349 |
+
Amount: 1456.75
|
350 |
+
|
351 |
+
Card: Sales Intelligence & Networking Platform
|
352 |
+
|
353 |
+
Trip Name: unknown
|
354 |
+
|
355 |
+
'
|
356 |
+
pipeline_tag: sentence-similarity
|
357 |
+
library_name: sentence-transformers
|
358 |
+
metrics:
|
359 |
+
- cosine_accuracy
|
360 |
+
- dot_accuracy
|
361 |
+
- manhattan_accuracy
|
362 |
+
- euclidean_accuracy
|
363 |
+
- max_accuracy
|
364 |
+
model-index:
|
365 |
+
- name: SentenceTransformer based on BAAI/bge-base-en
|
366 |
+
results:
|
367 |
+
- task:
|
368 |
+
type: triplet
|
369 |
+
name: Triplet
|
370 |
+
dataset:
|
371 |
+
name: bge base en train
|
372 |
+
type: bge-base-en-train
|
373 |
+
metrics:
|
374 |
+
- type: cosine_accuracy
|
375 |
+
value: 0.8413461538461539
|
376 |
+
name: Cosine Accuracy
|
377 |
+
- type: dot_accuracy
|
378 |
+
value: 0.15865384615384615
|
379 |
+
name: Dot Accuracy
|
380 |
+
- type: manhattan_accuracy
|
381 |
+
value: 0.8317307692307693
|
382 |
+
name: Manhattan Accuracy
|
383 |
+
- type: euclidean_accuracy
|
384 |
+
value: 0.8413461538461539
|
385 |
+
name: Euclidean Accuracy
|
386 |
+
- type: max_accuracy
|
387 |
+
value: 0.8413461538461539
|
388 |
+
name: Max Accuracy
|
389 |
+
- task:
|
390 |
+
type: triplet
|
391 |
+
name: Triplet
|
392 |
+
dataset:
|
393 |
+
name: bge base en eval
|
394 |
+
type: bge-base-en-eval
|
395 |
+
metrics:
|
396 |
+
- type: cosine_accuracy
|
397 |
+
value: 0.9696969696969697
|
398 |
+
name: Cosine Accuracy
|
399 |
+
- type: dot_accuracy
|
400 |
+
value: 0.030303030303030304
|
401 |
+
name: Dot Accuracy
|
402 |
+
- type: manhattan_accuracy
|
403 |
+
value: 0.9848484848484849
|
404 |
+
name: Manhattan Accuracy
|
405 |
+
- type: euclidean_accuracy
|
406 |
+
value: 0.9696969696969697
|
407 |
+
name: Euclidean Accuracy
|
408 |
+
- type: max_accuracy
|
409 |
+
value: 0.9848484848484849
|
410 |
+
name: Max Accuracy
|
411 |
+
---
|
412 |
+
|
413 |
+
# SentenceTransformer based on BAAI/bge-base-en
|
414 |
+
|
415 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
416 |
+
|
417 |
+
## Model Details
|
418 |
+
|
419 |
+
### Model Description
|
420 |
+
- **Model Type:** Sentence Transformer
|
421 |
+
- **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
|
422 |
+
- **Maximum Sequence Length:** 512 tokens
|
423 |
+
- **Output Dimensionality:** 768 tokens
|
424 |
+
- **Similarity Function:** Cosine Similarity
|
425 |
+
<!-- - **Training Dataset:** Unknown -->
|
426 |
+
<!-- - **Language:** Unknown -->
|
427 |
+
<!-- - **License:** Unknown -->
|
428 |
+
|
429 |
+
### Model Sources
|
430 |
+
|
431 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
432 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
433 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
434 |
+
|
435 |
+
### Full Model Architecture
|
436 |
+
|
437 |
+
```
|
438 |
+
SentenceTransformer(
|
439 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
440 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
441 |
+
(2): Normalize()
|
442 |
+
)
|
443 |
+
```
|
444 |
+
|
445 |
+
## Usage
|
446 |
+
|
447 |
+
### Direct Usage (Sentence Transformers)
|
448 |
+
|
449 |
+
First install the Sentence Transformers library:
|
450 |
+
|
451 |
+
```bash
|
452 |
+
pip install -U sentence-transformers
|
453 |
+
```
|
454 |
+
|
455 |
+
Then you can load this model and run inference.
|
456 |
+
```python
|
457 |
+
from sentence_transformers import SentenceTransformer
|
458 |
+
|
459 |
+
# Download from the 🤗 Hub
|
460 |
+
model = SentenceTransformer("ivanleomk/finetuned-bge-base-en")
|
461 |
+
# Run inference
|
462 |
+
sentences = [
|
463 |
+
'\nName : Viacom Solutions\nCategory: Telecom Hardware, Network Architecture\nDepartment: Engineering\nLocation: Tokyo, Japan\nAmount: 1450.67\nCard: Global Network Optimization Project\nTrip Name: unknown\n',
|
464 |
+
'\nName : Pardalis Digital\nCategory: Data Analytics Platform, Professional Networking Service\nDepartment: Sales\nLocation: Dublin, Ireland\nAmount: 1456.75\nCard: Sales Intelligence & Networking Platform\nTrip Name: unknown\n',
|
465 |
+
"\nName : Il Vino e L'Arte\nCategory: Culinary Experience, Cultural Event Venue\nDepartment: Marketing\nLocation: Rome, Italy\nAmount: 748.32\nCard: Cultural Engagement Dinner\nTrip Name: unknown\n",
|
466 |
+
]
|
467 |
+
embeddings = model.encode(sentences)
|
468 |
+
print(embeddings.shape)
|
469 |
+
# [3, 768]
|
470 |
+
|
471 |
+
# Get the similarity scores for the embeddings
|
472 |
+
similarities = model.similarity(embeddings, embeddings)
|
473 |
+
print(similarities.shape)
|
474 |
+
# [3, 3]
|
475 |
+
```
|
476 |
+
|
477 |
+
<!--
|
478 |
+
### Direct Usage (Transformers)
|
479 |
+
|
480 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
481 |
+
|
482 |
+
</details>
|
483 |
+
-->
|
484 |
+
|
485 |
+
<!--
|
486 |
+
### Downstream Usage (Sentence Transformers)
|
487 |
+
|
488 |
+
You can finetune this model on your own dataset.
|
489 |
+
|
490 |
+
<details><summary>Click to expand</summary>
|
491 |
+
|
492 |
+
</details>
|
493 |
+
-->
|
494 |
+
|
495 |
+
<!--
|
496 |
+
### Out-of-Scope Use
|
497 |
+
|
498 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
499 |
+
-->
|
500 |
+
|
501 |
+
## Evaluation
|
502 |
+
|
503 |
+
### Metrics
|
504 |
+
|
505 |
+
#### Triplet
|
506 |
+
* Dataset: `bge-base-en-train`
|
507 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
508 |
+
|
509 |
+
| Metric | Value |
|
510 |
+
|:-------------------|:-----------|
|
511 |
+
| cosine_accuracy | 0.8413 |
|
512 |
+
| dot_accuracy | 0.1587 |
|
513 |
+
| manhattan_accuracy | 0.8317 |
|
514 |
+
| euclidean_accuracy | 0.8413 |
|
515 |
+
| **max_accuracy** | **0.8413** |
|
516 |
+
|
517 |
+
#### Triplet
|
518 |
+
* Dataset: `bge-base-en-eval`
|
519 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
520 |
+
|
521 |
+
| Metric | Value |
|
522 |
+
|:-------------------|:-----------|
|
523 |
+
| cosine_accuracy | 0.9697 |
|
524 |
+
| dot_accuracy | 0.0303 |
|
525 |
+
| manhattan_accuracy | 0.9848 |
|
526 |
+
| euclidean_accuracy | 0.9697 |
|
527 |
+
| **max_accuracy** | **0.9848** |
|
528 |
+
|
529 |
+
<!--
|
530 |
+
## Bias, Risks and Limitations
|
531 |
+
|
532 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
533 |
+
-->
|
534 |
+
|
535 |
+
<!--
|
536 |
+
### Recommendations
|
537 |
+
|
538 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
539 |
+
-->
|
540 |
+
|
541 |
+
## Training Details
|
542 |
+
|
543 |
+
### Training Dataset
|
544 |
+
|
545 |
+
#### Unnamed Dataset
|
546 |
+
|
547 |
+
|
548 |
+
* Size: 208 training samples
|
549 |
+
* Columns: <code>sentence</code> and <code>label</code>
|
550 |
+
* Approximate statistics based on the first 208 samples:
|
551 |
+
| | sentence | label |
|
552 |
+
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
553 |
+
| type | string | int |
|
554 |
+
| details | <ul><li>min: 33 tokens</li><li>mean: 39.66 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>0: ~4.81%</li><li>1: ~5.29%</li><li>2: ~6.25%</li><li>3: ~2.40%</li><li>4: ~3.85%</li><li>5: ~4.33%</li><li>6: ~3.85%</li><li>7: ~2.40%</li><li>8: ~4.81%</li><li>9: ~3.37%</li><li>10: ~3.85%</li><li>11: ~3.85%</li><li>12: ~4.81%</li><li>13: ~4.81%</li><li>14: ~5.29%</li><li>15: ~3.37%</li><li>16: ~4.81%</li><li>17: ~4.33%</li><li>18: ~3.85%</li><li>19: ~1.92%</li><li>20: ~2.88%</li><li>21: ~2.88%</li><li>22: ~3.37%</li><li>23: ~0.96%</li><li>24: ~4.33%</li><li>25: ~2.40%</li><li>26: ~0.96%</li></ul> |
|
555 |
+
* Samples:
|
556 |
+
| sentence | label |
|
557 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
558 |
+
| <code><br>Name : Global Insights Group<br>Category: Subscriptions & Memberships, Data Services & Analytics<br>Department: Marketing<br>Location: London, UK<br>Amount: 1245.67<br>Card: Marketing Intelligence Fund<br>Trip Name: unknown<br></code> | <code>0</code> |
|
559 |
+
| <code><br>Name : CyberGuard Provisions<br>Category: Security Software Solutions, Data Protection Services<br>Department: Information Security<br>Location: San Francisco, CA<br>Amount: 879.92<br>Card: Digital Fortress Action Plan<br>Trip Name: unknown<br></code> | <code>1</code> |
|
560 |
+
| <code><br>Name : Apex Innovations Group<br>Category: Business Consulting, Training Services<br>Department: Executive<br>Location: Sydney, Australia<br>Amount: 1575.34<br>Card: Leadership Development Program<br>Trip Name: unknown<br></code> | <code>2</code> |
|
561 |
+
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
|
562 |
+
|
563 |
+
### Evaluation Dataset
|
564 |
+
|
565 |
+
#### Unnamed Dataset
|
566 |
+
|
567 |
+
|
568 |
+
* Size: 52 evaluation samples
|
569 |
+
* Columns: <code>sentence</code> and <code>label</code>
|
570 |
+
* Approximate statistics based on the first 52 samples:
|
571 |
+
| | sentence | label |
|
572 |
+
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
573 |
+
| type | string | int |
|
574 |
+
| details | <ul><li>min: 32 tokens</li><li>mean: 40.13 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~5.77%</li><li>1: ~1.92%</li><li>2: ~3.85%</li><li>3: ~1.92%</li><li>4: ~1.92%</li><li>5: ~1.92%</li><li>6: ~5.77%</li><li>8: ~3.85%</li><li>9: ~7.69%</li><li>10: ~5.77%</li><li>12: ~3.85%</li><li>13: ~5.77%</li><li>14: ~3.85%</li><li>15: ~1.92%</li><li>16: ~9.62%</li><li>17: ~1.92%</li><li>18: ~1.92%</li><li>19: ~3.85%</li><li>20: ~1.92%</li><li>21: ~3.85%</li><li>22: ~5.77%</li><li>23: ~3.85%</li><li>24: ~5.77%</li><li>25: ~5.77%</li></ul> |
|
575 |
+
* Samples:
|
576 |
+
| sentence | label |
|
577 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------|
|
578 |
+
| <code><br>Name : Viacom Solutions<br>Category: Telecom Hardware, Network Architecture<br>Department: Engineering<br>Location: Tokyo, Japan<br>Amount: 1450.67<br>Card: Global Network Optimization Project<br>Trip Name: unknown<br></code> | <code>9</code> |
|
579 |
+
| <code><br>Name : Vista Cascades Resort<br>Category: Hospitality, Event Hosting<br>Department: Sales<br>Location: Orlando, FL<br>Amount: 1823.45<br>Card: Annual Sales Retreat<br>Trip Name: Q3 Strategy Session<br></code> | <code>12</code> |
|
580 |
+
| <code><br>Name : ActiveHealth CoLab<br>Category: Health Services, Wellness Solutions<br>Department: HR<br>Location: Amsterdam, Netherlands<br>Amount: 745.32<br>Card: Corporate Wellness Partnership<br>Trip Name: unknown<br></code> | <code>23</code> |
|
581 |
+
* Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
|
582 |
+
|
583 |
+
### Training Hyperparameters
|
584 |
+
#### Non-Default Hyperparameters
|
585 |
+
|
586 |
+
- `eval_strategy`: steps
|
587 |
+
- `per_device_train_batch_size`: 16
|
588 |
+
- `per_device_eval_batch_size`: 16
|
589 |
+
- `learning_rate`: 2e-05
|
590 |
+
- `num_train_epochs`: 5
|
591 |
+
- `warmup_ratio`: 0.1
|
592 |
+
- `fp16`: True
|
593 |
+
- `batch_sampler`: no_duplicates
|
594 |
+
|
595 |
+
#### All Hyperparameters
|
596 |
+
<details><summary>Click to expand</summary>
|
597 |
+
|
598 |
+
- `overwrite_output_dir`: False
|
599 |
+
- `do_predict`: False
|
600 |
+
- `eval_strategy`: steps
|
601 |
+
- `prediction_loss_only`: True
|
602 |
+
- `per_device_train_batch_size`: 16
|
603 |
+
- `per_device_eval_batch_size`: 16
|
604 |
+
- `per_gpu_train_batch_size`: None
|
605 |
+
- `per_gpu_eval_batch_size`: None
|
606 |
+
- `gradient_accumulation_steps`: 1
|
607 |
+
- `eval_accumulation_steps`: None
|
608 |
+
- `torch_empty_cache_steps`: None
|
609 |
+
- `learning_rate`: 2e-05
|
610 |
+
- `weight_decay`: 0.0
|
611 |
+
- `adam_beta1`: 0.9
|
612 |
+
- `adam_beta2`: 0.999
|
613 |
+
- `adam_epsilon`: 1e-08
|
614 |
+
- `max_grad_norm`: 1.0
|
615 |
+
- `num_train_epochs`: 5
|
616 |
+
- `max_steps`: -1
|
617 |
+
- `lr_scheduler_type`: linear
|
618 |
+
- `lr_scheduler_kwargs`: {}
|
619 |
+
- `warmup_ratio`: 0.1
|
620 |
+
- `warmup_steps`: 0
|
621 |
+
- `log_level`: passive
|
622 |
+
- `log_level_replica`: warning
|
623 |
+
- `log_on_each_node`: True
|
624 |
+
- `logging_nan_inf_filter`: True
|
625 |
+
- `save_safetensors`: True
|
626 |
+
- `save_on_each_node`: False
|
627 |
+
- `save_only_model`: False
|
628 |
+
- `restore_callback_states_from_checkpoint`: False
|
629 |
+
- `no_cuda`: False
|
630 |
+
- `use_cpu`: False
|
631 |
+
- `use_mps_device`: False
|
632 |
+
- `seed`: 42
|
633 |
+
- `data_seed`: None
|
634 |
+
- `jit_mode_eval`: False
|
635 |
+
- `use_ipex`: False
|
636 |
+
- `bf16`: False
|
637 |
+
- `fp16`: True
|
638 |
+
- `fp16_opt_level`: O1
|
639 |
+
- `half_precision_backend`: auto
|
640 |
+
- `bf16_full_eval`: False
|
641 |
+
- `fp16_full_eval`: False
|
642 |
+
- `tf32`: None
|
643 |
+
- `local_rank`: 0
|
644 |
+
- `ddp_backend`: None
|
645 |
+
- `tpu_num_cores`: None
|
646 |
+
- `tpu_metrics_debug`: False
|
647 |
+
- `debug`: []
|
648 |
+
- `dataloader_drop_last`: False
|
649 |
+
- `dataloader_num_workers`: 0
|
650 |
+
- `dataloader_prefetch_factor`: None
|
651 |
+
- `past_index`: -1
|
652 |
+
- `disable_tqdm`: False
|
653 |
+
- `remove_unused_columns`: True
|
654 |
+
- `label_names`: None
|
655 |
+
- `load_best_model_at_end`: False
|
656 |
+
- `ignore_data_skip`: False
|
657 |
+
- `fsdp`: []
|
658 |
+
- `fsdp_min_num_params`: 0
|
659 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
660 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
661 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
662 |
+
- `deepspeed`: None
|
663 |
+
- `label_smoothing_factor`: 0.0
|
664 |
+
- `optim`: adamw_torch
|
665 |
+
- `optim_args`: None
|
666 |
+
- `adafactor`: False
|
667 |
+
- `group_by_length`: False
|
668 |
+
- `length_column_name`: length
|
669 |
+
- `ddp_find_unused_parameters`: None
|
670 |
+
- `ddp_bucket_cap_mb`: None
|
671 |
+
- `ddp_broadcast_buffers`: False
|
672 |
+
- `dataloader_pin_memory`: True
|
673 |
+
- `dataloader_persistent_workers`: False
|
674 |
+
- `skip_memory_metrics`: True
|
675 |
+
- `use_legacy_prediction_loop`: False
|
676 |
+
- `push_to_hub`: False
|
677 |
+
- `resume_from_checkpoint`: None
|
678 |
+
- `hub_model_id`: None
|
679 |
+
- `hub_strategy`: every_save
|
680 |
+
- `hub_private_repo`: False
|
681 |
+
- `hub_always_push`: False
|
682 |
+
- `gradient_checkpointing`: False
|
683 |
+
- `gradient_checkpointing_kwargs`: None
|
684 |
+
- `include_inputs_for_metrics`: False
|
685 |
+
- `eval_do_concat_batches`: True
|
686 |
+
- `fp16_backend`: auto
|
687 |
+
- `push_to_hub_model_id`: None
|
688 |
+
- `push_to_hub_organization`: None
|
689 |
+
- `mp_parameters`:
|
690 |
+
- `auto_find_batch_size`: False
|
691 |
+
- `full_determinism`: False
|
692 |
+
- `torchdynamo`: None
|
693 |
+
- `ray_scope`: last
|
694 |
+
- `ddp_timeout`: 1800
|
695 |
+
- `torch_compile`: False
|
696 |
+
- `torch_compile_backend`: None
|
697 |
+
- `torch_compile_mode`: None
|
698 |
+
- `dispatch_batches`: None
|
699 |
+
- `split_batches`: None
|
700 |
+
- `include_tokens_per_second`: False
|
701 |
+
- `include_num_input_tokens_seen`: False
|
702 |
+
- `neftune_noise_alpha`: None
|
703 |
+
- `optim_target_modules`: None
|
704 |
+
- `batch_eval_metrics`: False
|
705 |
+
- `eval_on_start`: False
|
706 |
+
- `use_liger_kernel`: False
|
707 |
+
- `eval_use_gather_object`: False
|
708 |
+
- `batch_sampler`: no_duplicates
|
709 |
+
- `multi_dataset_batch_sampler`: proportional
|
710 |
+
|
711 |
+
</details>
|
712 |
+
|
713 |
+
### Training Logs
|
714 |
+
| Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
|
715 |
+
|:-----:|:----:|:-----------------------------:|:------------------------------:|
|
716 |
+
| 0 | 0 | - | 0.8413 |
|
717 |
+
| 5.0 | 65 | 0.9848 | - |
|
718 |
+
|
719 |
+
|
720 |
+
### Framework Versions
|
721 |
+
- Python: 3.11.10
|
722 |
+
- Sentence Transformers: 3.1.1
|
723 |
+
- Transformers: 4.45.2
|
724 |
+
- PyTorch: 2.5.1+cu124
|
725 |
+
- Accelerate: 1.1.1
|
726 |
+
- Datasets: 3.1.0
|
727 |
+
- Tokenizers: 0.20.3
|
728 |
+
|
729 |
+
## Citation
|
730 |
+
|
731 |
+
### BibTeX
|
732 |
+
|
733 |
+
#### Sentence Transformers
|
734 |
+
```bibtex
|
735 |
+
@inproceedings{reimers-2019-sentence-bert,
|
736 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
737 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
738 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
739 |
+
month = "11",
|
740 |
+
year = "2019",
|
741 |
+
publisher = "Association for Computational Linguistics",
|
742 |
+
url = "https://arxiv.org/abs/1908.10084",
|
743 |
+
}
|
744 |
+
```
|
745 |
+
|
746 |
+
#### BatchSemiHardTripletLoss
|
747 |
+
```bibtex
|
748 |
+
@misc{hermans2017defense,
|
749 |
+
title={In Defense of the Triplet Loss for Person Re-Identification},
|
750 |
+
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
751 |
+
year={2017},
|
752 |
+
eprint={1703.07737},
|
753 |
+
archivePrefix={arXiv},
|
754 |
+
primaryClass={cs.CV}
|
755 |
+
}
|
756 |
+
```
|
757 |
+
|
758 |
+
<!--
|
759 |
+
## Glossary
|
760 |
+
|
761 |
+
*Clearly define terms in order to be accessible across audiences.*
|
762 |
+
-->
|
763 |
+
|
764 |
+
<!--
|
765 |
+
## Model Card Authors
|
766 |
+
|
767 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
768 |
+
-->
|
769 |
+
|
770 |
+
<!--
|
771 |
+
## Model Card Contact
|
772 |
+
|
773 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
774 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-base-en",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.45.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.2",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28890512c206ecd66a74bf10744200ac6b15873b252627390534c5af41d53c84
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|