--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # rag-topic-model This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("ivanleomk/rag-topic-model") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 5 * Number of training documents: 243
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | the - verification - my - for - code | 24 | -1_the_verification_my_for | | 0 | klarna - to - my - and - the | 19 | 0_klarna_to_my_and | | 1 | my - the - return - store - still | 98 | 1_my_the_return_store | | 2 | card - onetime - my - it - for | 69 | 2_card_onetime_my_it | | 3 | payment - my - due - date - the | 33 | 3_payment_my_due_date |
## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 2.0.2 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.5.2 * Sentence-transformers: 3.3.1 * Transformers: 4.46.3 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.9.6