|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from transformers.activations import ACT2FN |
|
from transformers.pytorch_utils import Conv1D |
|
from transformers.utils import ModelOutput |
|
from transformers import GPT2PreTrainedModel, GPT2Model |
|
from .backpack_config import BackpackGPT2Config |
|
|
|
|
|
|
|
class BackpackGPT2PreTrainedModel(GPT2PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias"] |
|
|
|
config_class = BackpackGPT2Config |
|
base_model_prefix = "backpack" |
|
is_parallelizable = True |
|
supports_gradient_checkpointing = False |
|
_no_split_modules = ["GPT2Block", "BackpackNoMixBlock"] |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
|
|
class BackpackMLP(nn.Module): |
|
def __init__(self, embed_dim, intermediate_dim, out_dim, config): |
|
super().__init__() |
|
self.c_fc = Conv1D(intermediate_dim, embed_dim) |
|
self.c_proj = Conv1D(out_dim, intermediate_dim) |
|
self.act = ACT2FN[config.activation_function] |
|
self.dropout = nn.Dropout(config.resid_pdrop) |
|
|
|
def forward( |
|
self, hidden_states: Optional[Tuple[torch.FloatTensor]] |
|
) -> torch.FloatTensor: |
|
hidden_states = self.c_fc(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.c_proj(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class BackpackNoMixBlock(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.ln_2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) |
|
self.mlp = BackpackMLP(config.n_embd, config.n_embd * 4, config.n_embd, config) |
|
self.resid_dropout1 = nn.Dropout(config.resid_pdrop) |
|
self.resid_dropout2 = nn.Dropout(config.resid_pdrop) |
|
|
|
def forward(self, hidden_states, residual): |
|
residual = self.resid_dropout1(hidden_states) + residual |
|
hidden_states = self.ln_1(residual) |
|
mlp_out = self.mlp(hidden_states) |
|
residual = self.resid_dropout2(mlp_out) + residual |
|
hidden_states = self.ln_2(residual) |
|
return hidden_states |
|
|
|
|
|
class BackpackSenseNetwork(nn.Module): |
|
def __init__(self, config, num_senses, device=None, dtype=None): |
|
super().__init__() |
|
self.num_senses = num_senses |
|
|
|
self.n_embd = config.n_embd |
|
|
|
self.dropout = nn.Dropout(config.embd_pdrop) |
|
self.block = BackpackNoMixBlock(config) |
|
self.ln = nn.LayerNorm(self.n_embd, eps=config.layer_norm_epsilon) |
|
self.final_mlp = BackpackMLP( |
|
embed_dim=config.n_embd, |
|
intermediate_dim=config.sense_intermediate_scale * config.n_embd, |
|
out_dim=config.n_embd * config.num_senses, |
|
config=config, |
|
) |
|
|
|
def forward(self, input_embeds): |
|
residual = self.dropout(input_embeds) |
|
hidden_states = self.ln(residual) |
|
hidden_states = self.block(hidden_states, residual) |
|
senses = self.final_mlp(hidden_states) |
|
bs, s, nvd = senses.shape |
|
return senses.reshape(bs, s, self.num_senses, self.n_embd).transpose( |
|
1, 2 |
|
) |
|
|
|
|
|
class BackpackWeightNetwork(nn.Module): |
|
def __init__(self, num_senses, embed_dim): |
|
super().__init__() |
|
self.n_embd = embed_dim |
|
self.num_senses = num_senses |
|
self.embed_per_sense = embed_dim // num_senses |
|
self.c_attn = nn.Linear(embed_dim, 2 * num_senses * self.embed_per_sense) |
|
self.softmax_scale = None |
|
|
|
def forward(self, encoded): |
|
b, s, d = encoded.shape |
|
encoded = self.c_attn(encoded) |
|
encoded = encoded.reshape( |
|
b, s, 2, self.num_senses, self.embed_per_sense |
|
) |
|
batch_size, seqlen = encoded.shape[0], encoded.shape[1] |
|
|
|
|
|
q, k = encoded.unbind(dim=2) |
|
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) |
|
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) |
|
causal_mask = torch.triu( |
|
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1 |
|
) |
|
scores = scores + causal_mask.to(dtype=scores.dtype) |
|
|
|
return torch.softmax(scores, dim=-1, dtype=q.dtype) |
|
|
|
|
|
@dataclass |
|
class BackpackGPT2BaseModelOutput(ModelOutput): |
|
hidden_states: torch.FloatTensor = None |
|
contextualization: torch.FloatTensor = None |
|
|
|
|
|
class BackpackGPT2Model(BackpackGPT2PreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r".*attn.masked_bias", r".*attn.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.embed_dim = config.n_embd |
|
|
|
self.num_senses = config.num_senses |
|
self.gpt2_model = GPT2Model(config) |
|
self.sense_network = BackpackSenseNetwork( |
|
config, self.num_senses, self.gpt2_model.wte |
|
) |
|
self.word_embeddings = self.gpt2_model.wte |
|
self.position_embeddings = self.gpt2_model.wpe |
|
self.sense_weight_net = BackpackWeightNetwork(self.num_senses, self.embed_dim) |
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
self.gradient_checkpointing = False |
|
|
|
def get_num_senses(self): |
|
return self.num_senses |
|
|
|
def get_word_embeddings(self): |
|
return self.word_embeddings |
|
|
|
def get_sense_network(self): |
|
return self.sense_network |
|
|
|
def forward(self, input_ids, position_ids: Optional[torch.LongTensor] = None): |
|
|
|
sense_input_embeds = self.word_embeddings(input_ids) |
|
senses = self.sense_network(sense_input_embeds) |
|
|
|
|
|
contextl_hidden_states = self.gpt2_model( |
|
input_ids, position_ids=position_ids |
|
).last_hidden_state |
|
contextualization = self.sense_weight_net( |
|
contextl_hidden_states |
|
) |
|
|
|
|
|
hidden_states = torch.sum( |
|
contextualization @ senses, dim=1 |
|
) |
|
|
|
|
|
hidden_states = hidden_states / self.num_senses |
|
|
|
return BackpackGPT2BaseModelOutput( |
|
hidden_states=hidden_states, |
|
contextualization=contextualization, |
|
) |
|
|
|
def run_with_custom_contextualization(self, input_ids, contextualization): |
|
|
|
sense_input_embeds = self.word_embeddings(input_ids) |
|
senses = self.sense_network(sense_input_embeds) |
|
|
|
|
|
hidden_states = torch.sum( |
|
contextualization @ senses, dim=1 |
|
) |
|
return BackpackGPT2BaseModelOutput( |
|
hidden_states=hidden_states, |
|
contextualization=contextualization, |
|
) |
|
|
|
|
|
@dataclass |
|
class BackpackGPT2LMHeadModelOutput(ModelOutput): |
|
logits: torch.FloatTensor = None |
|
contextualization: torch.FloatTensor = None |
|
|
|
|
|
class BackpackGPT2LMHeadModel(BackpackGPT2PreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r".*attn.masked_bias", r".*attn.bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.backpack = BackpackGPT2Model(config) |
|
|
|
|
|
self.model_parallel = False |
|
self.device_map = None |
|
|
|
def get_lm_head(self): |
|
return self.lm_head |
|
|
|
def forward(self, input_ids, position_ids=None): |
|
outputs = self.backpack(input_ids, position_ids=position_ids) |
|
hidden_states, contextualization = ( |
|
outputs.hidden_states, |
|
outputs.contextualization, |
|
) |
|
|
|
lm_logits = torch.einsum( |
|
"bsd,nd->bsn", hidden_states, self.backpack.word_embeddings.weight |
|
) |
|
return BackpackGPT2LMHeadModelOutput( |
|
logits=lm_logits, |
|
contextualization=contextualization, |
|
) |
|
|
|
def run_with_custom_contextualization(self, input_ids, contextualization): |
|
outputs = self.backpack.run_with_custom_contextualization( |
|
input_ids, contextualization |
|
) |
|
hidden_states, contextualization = ( |
|
outputs.hidden_states, |
|
outputs.contextualization, |
|
) |
|
lm_logits = self.lm_head(hidden_states) |
|
return BackpackGPT2LMHeadModelOutput( |
|
logits=lm_logits, |
|
contextualization=contextualization, |
|
) |
|
|