File size: 768 Bytes
7c2f56b 23719bf 7c2f56b 23719bf 7c2f56b 23719bf 7c2f56b 23719bf 71c8e51 7c2f56b 71c8e51 7c2f56b 71c8e51 7c2f56b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
from typing import Dict, List, Any
import faster_whisper
import torch
# Initialize the model and processor
model_name_or_path = "ivrit-ai/faster-whisper-v2-d3-e3"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = faster_whisper.WhisperModel(model_name_or_path, device=device)
def predict(audio_file_path):
return 'Bender is great!'
class CustomHandler:
def __init__(self, model_name):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.model.eval() # Set the model to evaluation mode
def __call__(self, data):
return 'Bender is great!'
# Initialize the handler with your model
handler = CustomHandler(model_name)
|