--- license: cc-by-4.0 base_model: Goader/liberta-large tags: - generated_from_trainer datasets: - universal_dependencies metrics: - precision - recall - f1 - accuracy model-index: - name: Goader_liberta-large-upos results: - task: name: Token Classification type: token-classification dataset: name: universal_dependencies type: universal_dependencies config: uk_iu split: validation args: uk_iu metrics: - name: Precision type: precision value: 0.7917968510685142 - name: Recall type: recall value: 0.7643218821508218 - name: F1 type: f1 value: 0.7714894659273394 - name: Accuracy type: accuracy value: 0.8942255801403131 --- # Goader_liberta-large-upos This model is a fine-tuned version of [Goader/liberta-large](https://huggingface.co/Goader/liberta-large) on the universal_dependencies dataset. It achieves the following results on the evaluation set: - Loss: 0.2970 - Precision: 0.7918 - Recall: 0.7643 - F1: 0.7715 - Accuracy: 0.8942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 1.11.0a0+17540c5 - Datasets 2.21.0 - Tokenizers 0.15.2