--- license: mit base_model: deepset/gbert-large tags: - generated_from_trainer datasets: - universal_dependencies metrics: - precision - recall - f1 - accuracy model-index: - name: gbert-large-upos results: - task: name: Token Classification type: token-classification dataset: name: universal_dependencies type: universal_dependencies config: de_gsd split: validation args: de_gsd metrics: - name: Precision type: precision value: 0.825291976991079 - name: Recall type: recall value: 0.7826990832215603 - name: F1 type: f1 value: 0.7912197452035137 - name: Accuracy type: accuracy value: 0.9413806706114398 --- # gbert-large-upos This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on the universal_dependencies dataset. It achieves the following results on the evaluation set: - Loss: 0.1996 - Precision: 0.8253 - Recall: 0.7827 - F1: 0.7912 - Accuracy: 0.9414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 438 | 0.3197 | 0.8098 | 0.7291 | 0.7486 | 0.8936 | | No log | 2.0 | 876 | 0.2261 | 0.8287 | 0.7679 | 0.7832 | 0.9269 | | No log | 3.0 | 1314 | 0.1996 | 0.8253 | 0.7827 | 0.7912 | 0.9414 | | No log | 4.0 | 1752 | 0.2183 | 0.8162 | 0.8006 | 0.8041 | 0.9435 | | No log | 5.0 | 2190 | 0.2120 | 0.8198 | 0.8025 | 0.8074 | 0.9496 | | No log | 6.0 | 2628 | 0.2339 | 0.8207 | 0.8068 | 0.8116 | 0.9489 | | No log | 7.0 | 3066 | 0.2728 | 0.8156 | 0.8045 | 0.8071 | 0.9486 | | No log | 8.0 | 3504 | 0.2790 | 0.8205 | 0.8110 | 0.8132 | 0.9527 | | No log | 9.0 | 3942 | 0.2854 | 0.8306 | 0.8096 | 0.8146 | 0.9527 | | No log | 10.0 | 4380 | 0.2906 | 0.8299 | 0.8115 | 0.8151 | 0.9534 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1