--- license: mit base_model: deepset/gbert-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: gbert-large_ner results: [] --- # gbert-large_ner This model is a fine-tuned version of [deepset/gbert-large](https://huggingface.co/deepset/gbert-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3755 - Precision: 0.9010 - Recall: 0.8948 - F1: 0.8975 - Accuracy: 0.9521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 438 | 0.2334 | 0.8727 | 0.8653 | 0.8649 | 0.9303 | | 0.3598 | 2.0 | 876 | 0.2149 | 0.8885 | 0.8649 | 0.8757 | 0.9391 | | 0.1678 | 3.0 | 1314 | 0.2257 | 0.8820 | 0.8906 | 0.8847 | 0.9461 | | 0.1054 | 4.0 | 1752 | 0.2580 | 0.8902 | 0.8884 | 0.8884 | 0.9463 | | 0.0645 | 5.0 | 2190 | 0.2881 | 0.8896 | 0.8820 | 0.8833 | 0.9451 | | 0.0436 | 6.0 | 2628 | 0.2767 | 0.8922 | 0.8911 | 0.8914 | 0.9479 | | 0.0245 | 7.0 | 3066 | 0.3190 | 0.9026 | 0.9038 | 0.9030 | 0.9534 | | 0.0108 | 8.0 | 3504 | 0.3547 | 0.8879 | 0.8886 | 0.8876 | 0.9474 | | 0.0108 | 9.0 | 3942 | 0.3780 | 0.8943 | 0.8886 | 0.8910 | 0.9494 | | 0.0074 | 10.0 | 4380 | 0.3755 | 0.9010 | 0.8948 | 0.8975 | 0.9521 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1