File size: 2,454 Bytes
0b31a0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: cc-by-4.0
base_model: allegro/herbert-large-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: herbert-large-cased-topic_classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# herbert-large-cased-topic_classification

This model is a fine-tuned version of [allegro/herbert-large-cased](https://huggingface.co/allegro/herbert-large-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5731
- Precision: 0.9195
- Recall: 0.9014
- F1: 0.9082
- Accuracy: 0.9167

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 44   | 0.3576          | 0.9119    | 0.8684 | 0.8815 | 0.9020   |
| No log        | 2.0   | 88   | 0.3342          | 0.9085    | 0.9027 | 0.8973 | 0.9069   |
| No log        | 3.0   | 132  | 0.4985          | 0.9121    | 0.8826 | 0.8916 | 0.9020   |
| No log        | 4.0   | 176  | 0.6182          | 0.8998    | 0.8858 | 0.8911 | 0.9020   |
| No log        | 5.0   | 220  | 0.5089          | 0.9056    | 0.8880 | 0.8944 | 0.9020   |
| No log        | 6.0   | 264  | 0.6806          | 0.9061    | 0.8593 | 0.8766 | 0.8922   |
| No log        | 7.0   | 308  | 0.5604          | 0.9127    | 0.8866 | 0.8969 | 0.9069   |
| No log        | 8.0   | 352  | 0.5780          | 0.9157    | 0.9036 | 0.9077 | 0.9167   |
| No log        | 9.0   | 396  | 0.5733          | 0.9195    | 0.9014 | 0.9082 | 0.9167   |
| No log        | 10.0  | 440  | 0.5731          | 0.9195    | 0.9014 | 0.9082 | 0.9167   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1