File size: 1,380 Bytes
ce21aa3 ef0ee2e 41cf1e0 ef0ee2e a1bebd9 ef0ee2e ce21aa3 ef0ee2e a1bebd9 ef0ee2e a1bebd9 ef0ee2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: cc-by-sa-4.0
datasets:
- izumi-lab/llm-japanese-dataset-vanilla
language:
- ja
tags:
- gpt_neox
- japanese
- causal-lm
---
This repo contains a low-rank adapter for [CALM](https://huggingface.co/cyberagent/open-calm-7b)
fit on the dataset specially extracted from [llm-japanese-dataset](https://github.com/masanorihirano/llm-japanese-dataset).
You can test this at https://huggingface.co/spaces/izumi-lab/stormy-7b-10ep
This version of the weights was trained with the following hyperparameters:
- Epochs: 10
- Batch size: 128
- Cutoff length: 300
- Learning rate: 3e-4
- Lora _r_: 4
- Lora target modules: query_key_value
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
base_model = "cyberagent/open-calm-7b"
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = PeftModel.from_pretrained(
model,
"izumi-lab/stormy-7b-10ep",
torch_dtype=torch.float16,
)
```
To see more latest information, please go to [llm.msuzuki.me](https://llm.msuzuki.me).
## Details
- Japanese Paper:
- English Paper:
- Website: [llm.msuzuki.me](https://llm.msuzuki.me).
Citation: TBD
If you have any inquiries, such as joint research, data provision, various types of support, please email izumi-llm@socsim.org . |