File size: 1,439 Bytes
f3701bb d23dbeb f3701bb 334868e f3701bb e26a7d1 f3701bb 3353a9e f3701bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
language: "en"
tags:
- roberta
- sentiment
- twitter
widget:
- text: "This looks tasty. Where can I buy it??"
- text: "Now I want this, too."
- text: "You look great today!"
- text: "I just love spring and sunshine!"
---
This RoBERTa-based model can classify *expressed purchase intentions* in English language text in 2 classes:
- purchase intention 🤩
- no purchase intention 😐
The model was fine-tuned on 2,000 manually annotated social media posts.
The hold-out accuracy is 95% (vs. a balanced 50% random-chance baseline).
For details on the training approach see Web Appendix F in Hartmann et al. (2021).
# Application
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="j-hartmann/purchase-intention-english-roberta-large", return_all_scores=True)
classifier("I want this!")
```
```python
Output:
[[{'label': 'no', 'score': 0.0014553926885128021},
{'label': 'yes', 'score': 0.9985445737838745}]]
```
# Reference
Please cite [this paper](https://journals.sagepub.com/doi/full/10.1177/00222437211037258) when you use our model. Feel free to reach out to [jochen.hartmann@tum.de](mailto:jochen.hartmann@tum.de) with any questions or feedback you may have.
```
@article{hartmann2021,
title={The Power of Brand Selfies},
author={Hartmann, Jochen and Heitmann, Mark and Schamp, Christina and Netzer, Oded},
journal={Journal of Marketing Research}
year={2021}
}
``` |