j-hartmann
commited on
Commit
•
f995433
1
Parent(s):
f96d3a9
Update README.md
Browse files
README.md
CHANGED
@@ -22,6 +22,20 @@ The model was fine-tuned on 5,304 manually annotated social media posts.
|
|
22 |
The hold-out accuracy is 86.1%.
|
23 |
For details on the training approach see Web Appendix F in Hartmann et al. (2021).
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Reference
|
26 |
Please cite [this paper](https://journals.sagepub.com/doi/full/10.1177/00222437211037258) when you use our model. Feel free to reach out to [j.p.hartmann@rug.nl](mailto:j.p.hartmann@rug.nl) with any questions or feedback you may have.
|
27 |
```
|
|
|
22 |
The hold-out accuracy is 86.1%.
|
23 |
For details on the training approach see Web Appendix F in Hartmann et al. (2021).
|
24 |
|
25 |
+
# Application
|
26 |
+
```python
|
27 |
+
from transformers import pipeline
|
28 |
+
classifier = pipeline("text-classification", model="j-hartmann/sentiment-roberta-large-english-3-classes", return_all_scores=True)
|
29 |
+
classifier("This is so nice!")
|
30 |
+
```
|
31 |
+
|
32 |
+
```python
|
33 |
+
Output:
|
34 |
+
[[{'label': 'negative', 'score': 0.00016451838018838316},
|
35 |
+
{'label': 'neutral', 'score': 0.000174045650055632},
|
36 |
+
{'label': 'positive', 'score': 0.9996614456176758}]]
|
37 |
+
```
|
38 |
+
|
39 |
# Reference
|
40 |
Please cite [this paper](https://journals.sagepub.com/doi/full/10.1177/00222437211037258) when you use our model. Feel free to reach out to [j.p.hartmann@rug.nl](mailto:j.p.hartmann@rug.nl) with any questions or feedback you may have.
|
41 |
```
|