--- language: "en" tags: - roberta - sentiment - twitter widget: - text: "Oh no. This is bad.." - text: "To be or not to be." - text: "Oh Happy Day" --- This RoBERTa-based model can classify the sentiment of English language text in 3 classes: - positive 😀 - neutral 😐 - negative 🙁 The model was fine-tuned on 5,304 manually annotated social media posts. The hold-out accuracy is 86.1%. For details on the training approach see Web Appendix F in Hartmann et al. (2021). # Reference Please cite [this paper](https://journals.sagepub.com/doi/full/10.1177/00222437211037258) when you use our model. Feel free to reach out to [j.p.hartmann@rug.nl](mailto:j.p.hartmann@rug.nl) with any questions or feedback you may have. ``` @article{hartmann2021, title={The Power of Brand Selfies}, author={Hartmann, Jochen and Heitmann, Mark and Schamp, Christina and Netzer, Oded}, journal={Journal of Marketing Research} year={2021} } ```