|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Tuple, cast
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange, repeat
|
|
|
|
|
|
class IndexFirstAxis(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, input: torch.Tensor,
|
|
indices: torch.Tensor) -> torch.Tensor:
|
|
"""Get just the values of `input` which are at `indices`.
|
|
|
|
Arguments:
|
|
ctx: the autograd context object
|
|
input: (b, ...) 2+ dimensional tensor
|
|
indices: (num_idx) 1D tensor
|
|
"""
|
|
ctx.save_for_backward(indices)
|
|
assert input.ndim >= 2
|
|
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[
|
|
1:]
|
|
second_dim = other_shape.numel(
|
|
)
|
|
|
|
return torch.gather(
|
|
rearrange(input, 'b ... -> b (...)'),
|
|
0,
|
|
repeat(indices, 'z -> z d',
|
|
d=second_dim)
|
|
).reshape(-1, *other_shape)
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]:
|
|
indices, = ctx.saved_tensors
|
|
assert grad_output.ndim >= 2
|
|
other_shape = grad_output.shape[1:]
|
|
grad_output = rearrange(grad_output, 'b ... -> b (...)')
|
|
grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]],
|
|
device=grad_output.device,
|
|
dtype=grad_output.dtype)
|
|
|
|
|
|
grad_input.scatter_(0,
|
|
repeat(indices, 'z -> z d', d=grad_output.shape[1]),
|
|
grad_output)
|
|
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
|
|
|
|
|
index_first_axis = IndexFirstAxis.apply
|
|
|
|
|
|
class IndexPutFirstAxis(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, values: torch.Tensor, indices: torch.Tensor,
|
|
first_axis_dim) -> torch.Tensor:
|
|
ctx.save_for_backward(indices)
|
|
assert indices.ndim == 1
|
|
assert values.ndim >= 2
|
|
output = torch.zeros(first_axis_dim,
|
|
*values.shape[1:],
|
|
device=values.device,
|
|
dtype=values.dtype)
|
|
output[indices] = values
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx,
|
|
grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
|
|
indices, = ctx.saved_tensors
|
|
grad_values = grad_output[indices]
|
|
return grad_values, None, None
|
|
|
|
|
|
index_put_first_axis = IndexPutFirstAxis.apply
|
|
|
|
|
|
def unpad_input(
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
|
|
"""Remove padding from input sequences.
|
|
|
|
Arguments:
|
|
hidden_states: (batch, seqlen, ...)
|
|
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
|
|
|
Returns:
|
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
|
indices: (total_nnz)
|
|
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
|
max_seqlen_in_batch: int ()
|
|
"""
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
|
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32),
|
|
(1, 0))
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = cast(
|
|
torch.Tensor,
|
|
index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'),
|
|
indices))
|
|
return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
|
|
|
|
|
|
def unpad_input_only(
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
"""Like unpad_input, but only return the unpadded first tensor.
|
|
|
|
Save a small amount of overhead.
|
|
|
|
Arguments:
|
|
hidden_states: (batch, seqlen, ...)
|
|
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
|
|
|
Returns:
|
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
|
"""
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
return index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'),
|
|
indices)
|
|
|
|
|
|
def pad_input(hidden_states: torch.Tensor, indices: torch.Tensor, batch: int,
|
|
seqlen: int) -> torch.Tensor:
|
|
"""Add padding to sequences.
|
|
|
|
Arguments:
|
|
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
|
indices: (total_nnz)
|
|
batch: int batch_size
|
|
seqlen: int max sequence length
|
|
|
|
Returns:
|
|
hidden_states: (batch, seqlen, ...)
|
|
"""
|
|
output = index_put_first_axis(hidden_states, indices, batch * seqlen)
|
|
return rearrange(output, '(b s) ... -> b s ...', b=batch)
|
|
|