Update README.md
Browse files
README.md
CHANGED
@@ -6,4 +6,76 @@ language:
|
|
6 |
- en
|
7 |
base_model:
|
8 |
- black-forest-labs/FLUX.1-dev
|
9 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
- en
|
7 |
base_model:
|
8 |
- black-forest-labs/FLUX.1-dev
|
9 |
+
---
|
10 |
+
#This prompt is from message 2. #The goal is to generate 100 messages per prompt.
|
11 |
+
|
12 |
+
prompt2 = "Vaping is risky"
|
13 |
+
|
14 |
+
#Below, we specify to use pytorch machine learning framework.
|
15 |
+
#You can also choose Tensorflow, but we use Pytorch here.
|
16 |
+
|
17 |
+
inputs = tokenizer(prompt2, return_tensors="pt")
|
18 |
+
---
|
19 |
+
#We generate 50 messages each time due to restrictions in Ram storage.
|
20 |
+
|
21 |
+
sample_outputs = bloom.generate(inputs["input_ids"],
|
22 |
+
temperature = 0.7,
|
23 |
+
max_new_tokens = 60,
|
24 |
+
do_sample=True,
|
25 |
+
top_k=40,
|
26 |
+
top_p=0.9,
|
27 |
+
num_return_sequences=50
|
28 |
+
)
|
29 |
+
|
30 |
+
print("Output:\n" + 100 * '-')
|
31 |
+
messages = []
|
32 |
+
for i, sample_output in enumerate(sample_outputs):
|
33 |
+
generated_messages = tokenizer.decode(sample_output, skip_special_tokens=True)
|
34 |
+
print("{}: {}".format(i, generated_messages))
|
35 |
+
messages.append(generated_messages)
|
36 |
+
|
37 |
+
print(messages)
|
38 |
+
---
|
39 |
+
#We save the AI-generated messages to google drive.
|
40 |
+
|
41 |
+
AI_messages = pd.DataFrame(messages, columns = ['tweet'])
|
42 |
+
AI_messages.to_csv('Vaping is risky1.csv', index = False)
|
43 |
+
---
|
44 |
+
#Then generate another 50 messages with prompt1 and then save to google drive.
|
45 |
+
|
46 |
+
AI_messages = pd.DataFrame(messages, columns = ['tweet'])
|
47 |
+
AI_messages.to_csv('Vaping is risky2.csv', index = False)
|
48 |
+
---
|
49 |
+
#This prompt is from message 3. #The goal is to generate 100 messages per prompt.
|
50 |
+
|
51 |
+
prompt3 = "Vapes and e-cigarettes increase your risk"
|
52 |
+
|
53 |
+
#Below, we specify to use pytorch machine learning framework.
|
54 |
+
#You can also choose Tensorflow, but we use Pytorch here.
|
55 |
+
|
56 |
+
inputs = tokenizer(prompt3, return_tensors="pt")
|
57 |
+
---
|
58 |
+
#We generate 50 messages each time due to restrictions in Ram storage.
|
59 |
+
|
60 |
+
sample_outputs = bloom.generate(inputs["input_ids"],
|
61 |
+
temperature = 0.7,
|
62 |
+
max_new_tokens = 60,
|
63 |
+
do_sample=True,
|
64 |
+
top_k=40,
|
65 |
+
top_p=0.9,
|
66 |
+
num_return_sequences=50
|
67 |
+
)
|
68 |
+
|
69 |
+
print("Output:\n" + 100 * '-')
|
70 |
+
messages = []
|
71 |
+
for i, sample_output in enumerate(sample_outputs):
|
72 |
+
generated_messages = tokenizer.decode(sample_output, skip_special_tokens=True)
|
73 |
+
print("{}: {}".format(i, generated_messages))
|
74 |
+
messages.append(generated_messages)
|
75 |
+
|
76 |
+
print(messages)
|
77 |
+
---
|
78 |
+
#We save the AI-generated messages to google drive.
|
79 |
+
|
80 |
+
AI_messages = pd.DataFrame(messages, columns = ['tweet'])
|
81 |
+
AI_messages.to_csv('Vapes and e-cigarettes increase your risk1.csv', index = False)
|