jackoyoungblood commited on
Commit
c4f40c4
·
1 Parent(s): 6135318

Initial commit

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 1426.76 +/- 368.71
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 1416.24 +/- 70.51
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:35da4c23d7fa53ef62772344a95e7cabf07d2d43655b70b411bd80e348905459
3
- size 129260
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e8596e9b1394706169c40cf97f02488a872b71ce00d0b5dc36739a3847d63dd
3
+ size 129261
a2c-AntBulletEnv-v0/data CHANGED
@@ -58,12 +58,12 @@
58
  "_np_random": null
59
  },
60
  "n_envs": 4,
61
- "num_timesteps": 5000000,
62
- "_total_timesteps": 5000000,
63
  "_num_timesteps_at_start": 0,
64
  "seed": null,
65
  "action_noise": null,
66
- "start_time": 1662936393.4208202,
67
  "learning_rate": 0.00095,
68
  "tensorboard_log": "./tensorboard",
69
  "lr_schedule": {
@@ -72,7 +72,7 @@
72
  },
73
  "_last_obs": {
74
  ":type:": "<class 'numpy.ndarray'>",
75
- ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAASzs0vyA60r+ffjO/fSyJvd5lBMAdsFy/DthHPhgrtz9iA56+ZOHrv5domr4zYIw+/YtDv3tXHsBslHw+lNQev5wKx78VzwnA+YJNv1opjD+6NFc+tSwbwIyhV7+RXKI9dU2XP4aW5r/AlRg/OH5hv8Es2b581PS/tPaivyzgjb5ZgIK9boBlvcBAnb+tmi0/H/EePxNkK7/1T3S/+g16PoHajb6AUl8+PyEwP1jzAz4c6jY/vdPZPsJzsL/aX0a/6zOBP+9moD4jGse9nV+TP5qSWL81Gw4/wJUYPzh+Yb9uzCg+d2iqvqxk5j6538c+UgkgP+S3NT/JzlQ/Vaf7Pgb3zr8JWiG/EGmFP7pCQz9fAZs+mY6IvyXNjr9+uUXAciLtPj2P176SPVc98tHPPx1DzT10i7c/5ppfv+pnQcCakli/NRsOP8CVGD84fmG/OFLGvV+P1L+tszu/fZxtP1y0AL9saoc/ohmevX2zr73FU6s+ReKxP3rGZL9keGS7Q4KWvlPE3j/iVWQ8/EJWPzuBT7914/o/bDVRP5N6/D9IXjW/g1ZlPWIiyT63puk+mpJYvzUbDj+iwNa/L1GRP5R0lGIu"
76
  },
77
  "_last_episode_starts": {
78
  ":type:": "<class 'numpy.ndarray'>",
@@ -80,7 +80,7 @@
80
  },
81
  "_last_original_obs": {
82
  ":type:": "<class 'numpy.ndarray'>",
83
- ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHbQNbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA3WiK9AAAAAPQQ678AAAAA/FLSuwAAAAA7HPA/AAAAAL67tr0AAAAAWjzrPwAAAACk9fm8AAAAAFNI/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQoNU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAw5gDvQAAAAC9RNq/AAAAAHckqT0AAAAACNX5PwAAAABinqE9AAAAAMjp/T8AAAAAIlGlvQAAAADZMuy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzIG+NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKN2db0AAAAAB+/tvwAAAACcjBY9AAAAAKSx9z8AAAAAMI6yPAAAAAAMXP8/AAAAANVkCL4AAAAAMa3avwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4bvrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDSgg0+AAAAAF28AMAAAAAAeYSrvQAAAACAT+I/AAAAAKSWpj0AAAAA+kXsPwAAAADsEd49AAAAAPH26b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
  },
85
  "_episode_num": 0,
86
  "use_sde": true,
@@ -88,13 +88,13 @@
88
  "_current_progress_remaining": 0.0,
89
  "ep_info_buffer": {
90
  ":type:": "<class 'collections.deque'>",
91
- ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyIbzUZvUCMAWyUTegDjAF0lEdAwCEOydnTRnV9lChoBkdAnbDjeKsMiWgHTegDaAhHQMAhJ10cOsl1fZQoaAZHQJ0j8sjFAFBoB03oA2gIR0DAIXabF0gbdX2UKGgGR0CdguiuMdcTaAdN6ANoCEdAwCGT5eJHiHV9lChoBkdAmwpQ2l2vCGgHTegDaAhHQMAkao1DSgJ1fZQoaAZHQJ1yeXNTtLNoB03oA2gIR0DAJIHzpX6qdX2UKGgGR0CgE+e+mFajaAdN6ANoCEdAwCTPs7dSEXV9lChoBkdAnzaLnPmgamgHTegDaAhHQMAk7YMF2V51fZQoaAZHQJwcFHAh0QtoB03oA2gIR0DAJ9O/L1VYdX2UKGgGR0CgNLe5vtMPaAdN6ANoCEdAwCftKEnLJXV9lChoBkdAoAGWee4Cp2gHTegDaAhHQMAoPSde6Zp1fZQoaAZHQJxfEffXPJJoB03oA2gIR0DAKFqZH/cWdX2UKGgGR0CfBeac7QsxaAdN6ANoCEdAwCs0+ajN6nV9lChoBkdAndlDnJT2nWgHTegDaAhHQMArTEofCAN1fZQoaAZHQJrBK5H3DeloB03oA2gIR0DAK52GIsRQdX2UKGgGR0Cc8gK+zt1IaAdN6ANoCEdAwCu6KtPpIXV9lChoBkdAmZyhi1Aqu2gHTegDaAhHQMAukJ++dsl1fZQoaAZHQJ76Dwb2lEZoB03oA2gIR0DALqgkiUxEdX2UKGgGR0Cec8G+sYEXaAdN6ANoCEdAwC734iX6ZnV9lChoBkdAnKNQaNuLrGgHTegDaAhHQMAvFhgeA/d1fZQoaAZHQJlmKsdT5whoB03oA2gIR0DAMerMottidX2UKGgGR0CeFfT4cm0FaAdN6ANoCEdAwDICp+c6NnV9lChoBkdAneMH0K7ZnWgHTegDaAhHQMAyUS5qdpZ1fZQoaAZHQJWQgMx46fdoB03oA2gIR0DAMmz/yXlbdX2UKGgGR0CZ8lJ04iosaAdN6ANoCEdAwDVCG1x82XV9lChoBkdAnZoCGetjkWgHTegDaAhHQMA1WWGyon91fZQoaAZHQJ71TVFx4ptoB03oA2gIR0DANakRnOB2dX2UKGgGR0CdFij2SMcZaAdN6ANoCEdAwDXHbW3BpHV9lChoBkdAmVcikTHsC2gHTegDaAhHQMA4oYQz1sd1fZQoaAZHQJ37uOwPiDNoB03oA2gIR0DAOLiS5iEydX2UKGgGR0CfQoEW69TQaAdN6ANoCEdAwDkG6YE4enV9lChoBkdAmwSm4AjptGgHTegDaAhHQMA5I6bONYN1fZQoaAZHQJ4z27Ackt5oB03oA2gIR0DAO/2T3Zf2dX2UKGgGR0CYE+D5j6N3aAdN6ANoCEdAwDwVXUYsNHV9lChoBkdAmGOMvRJEpmgHTegDaAhHQMA8Yy9/SYx1fZQoaAZHQJp7crQPZqVoB03oA2gIR0DAPH+bPQfIdX2UKGgGR0Cc5108NhE0aAdN6ANoCEdAwD9QcslLOHV9lChoBkdAmdHowudwvWgHTegDaAhHQMA/aL1dxAB1fZQoaAZHQJlfk7V8Ti9oB03oA2gIR0DAP7bisGPgdX2UKGgGR0CX4ix2jfvXaAdN6ANoCEdAwD/UDdP+GXV9lChoBkdAmKNPFFUhm2gHTegDaAhHQMBCpiQtBfN1fZQoaAZHQJfGWm78Nx5oB03oA2gIR0DAQrxpDeCTdX2UKGgGR0Cc6xpzLfUGaAdN6ANoCEdAwEMJGd7OV3V9lChoBkdAnMnTAnDziGgHTegDaAhHQMBDJfh/Aj91fZQoaAZHQJ3b0I2OyVxoB03oA2gIR0DARf6RSxZ/dX2UKGgGR0CdX7m4RVZLaAdN6ANoCEdAwEYWtCiRGXV9lChoBkdAni+qo2n89GgHTegDaAhHQMBGY3UQTVV1fZQoaAZHQJf9bkbPyCpoB03oA2gIR0DARn/8uSOjdX2UKGgGR0CcLIZh8YygaAdN6ANoCEdAwElWA93bEnV9lChoBkdAm3dRFRYRumgHTegDaAhHQMBJbYRVZLZ1fZQoaAZHQJrThotcv/RoB03oA2gIR0DASbyCJ40NdX2UKGgGR0CdP6gflp49aAdN6ANoCEdAwEnZeE7GN3V9lChoBkdAnv/k8eS0SmgHTegDaAhHQMBMtYUvf0p1fZQoaAZHQJry4s6JZW9oB03oA2gIR0DATM2NYKYzdX2UKGgGR0CdZAxlQMx5aAdN6ANoCEdAwE0dcVxjrnV9lChoBkdAnbjZZntfHGgHTegDaAhHQMBNOrxiG351fZQoaAZHQJ2vkk8ifQNoB03oA2gIR0DAUBNbA1vVdX2UKGgGR0Cd6ThybQTmaAdN6ANoCEdAwFAq5PM0QHV9lChoBkdAlnNNaEBbOmgHTegDaAhHQMBQe7qyGBZ1fZQoaAZHQJ04GRQrMC9oB03oA2gIR0DAUJjDhtLtdX2UKGgGR0CftkTMqz7eaAdN6ANoCEdAwFN59y925nV9lChoBkdAmkVSobXHzmgHTegDaAhHQMBTkdLQHA11fZQoaAZHQJngEPz4DcNoB03oA2gIR0DAU+GOMl1KdX2UKGgGR0CeOuit7rs0aAdN6ANoCEdAwFP+7U5MlHV9lChoBkdAiHt83l0YCWgHTegDaAhHQMBW6cG9pRJ1fZQoaAZHQJC06ZCv5gxoB03oA2gIR0DAVwHXRPXTdX2UKGgGR0CHDPwsoUi7aAdN6ANoCEdAwFdS1IAfdXV9lChoBkdAcwy1kUbkwWgHTegDaAhHQMBXcgnc+JR1fZQoaAZHQJI9tjtoi9toB03oA2gIR0DAWlUY0l7ddX2UKGgGR0CVYnXl8w6AaAdN6ANoCEdAwFpuDB/I83V9lChoBkdAmfLsn/kvK2gHTegDaAhHQMBavBlMAWB1fZQoaAZHQJ2JA3Ov+wVoB03oA2gIR0DAWtkXP7emdX2UKGgGR0CfQVBE8aGYaAdN6ANoCEdAwF23um78N3V9lChoBkdAmbiveDWbw2gHTegDaAhHQMBdzugYgq51fZQoaAZHQJ+YDlr/KhdoB03oA2gIR0DAXh5XKbKBdX2UKGgGR0COygVt4zJqaAdN6ANoCEdAwF46xA0KqnV9lChoBkdAnAQN7fHgg2gHTegDaAhHQMBhF1Gb1AZ1fZQoaAZHQJt3lGUfPopoB03oA2gIR0DAYS+ucMEzdX2UKGgGR0Cd4hX+VC5VaAdN6ANoCEdAwGF+ZQYUFnV9lChoBkdAkl4qY/mknGgHTegDaAhHQMBhnlkH2RJ1fZQoaAZHQJlhMtjCpFVoB03oA2gIR0DAZH/kT6BRdX2UKGgGR0CdvRdPLxI8aAdN6ANoCEdAwGSXz0Yj0XV9lChoBkdAnLDhChN/OWgHTegDaAhHQMBk5t8uzyB1fZQoaAZHQJ6vr5RCQcRoB03oA2gIR0DAZQL72tdSdX2UKGgGR0CekK4L1EmZaAdN6ANoCEdAwGfb41P3z3V9lChoBkdAnma9m6GxlmgHTegDaAhHQMBn9WcawUx1fZQoaAZHQJ901BeHBUJoB03oA2gIR0DAaEW6XjU/dX2UKGgGR0CfPalI3BHkaAdN6ANoCEdAwGhjhFVktnV9lChoBkdAnUy/gNwzcmgHTegDaAhHQMBrPAOjIq91fZQoaAZHQJxfL81n/T9oB03oA2gIR0DAa1VW+49YdX2UKGgGR0CddsGWldkbaAdN6ANoCEdAwGuijHn2ZnV9lChoBkdAm1ObuQZGa2gHTegDaAhHQMBrv0mD15B1fZQoaAZHQJ0WDC2tuDVoB03oA2gIR0DAbpxM6BAfdX2UKGgGR0Cb1oInBtUGaAdN6ANoCEdAwG6ze67NCHV9lChoBkdAlH8JV81Gb2gHTegDaAhHQMBvApg9eQd1fZQoaAZHQJwc/hddE9doB03oA2gIR0DAbx9W8yvcdX2UKGgGR0CceP7+1jRVaAdN6ANoCEdAwHH2NoakynV9lChoBkdAmQwHyqdYn2gHTegDaAhHQMByDaK1og51fZQoaAZHQJXqz225QP9oB03oA2gIR0DAclnVf/m1dX2UKGgGR0CfX4jj7yhBaAdN6ANoCEdAwHJ3X2/SIHVlLg=="
92
  },
93
  "ep_success_buffer": {
94
  ":type:": "<class 'collections.deque'>",
95
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
  },
97
- "_n_updates": 156250,
98
  "n_steps": 8,
99
  "gamma": 0.992,
100
  "gae_lambda": 0.9,
 
58
  "_np_random": null
59
  },
60
  "n_envs": 4,
61
+ "num_timesteps": 11000000,
62
+ "_total_timesteps": 11000000,
63
  "_num_timesteps_at_start": 0,
64
  "seed": null,
65
  "action_noise": null,
66
+ "start_time": 1662945513.544701,
67
  "learning_rate": 0.00095,
68
  "tensorboard_log": "./tensorboard",
69
  "lr_schedule": {
 
72
  },
73
  "_last_obs": {
74
  ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAzOBrvuuVuD5ybMQ+IotkPbMewzzv1K++MHdQvxH5+r74tEa+Uf2mvpNvDr2156E/TFrNvg7Lar61eUY/sXKHPv6dQD8/qVa/v4EMv7Z0Yr2RW2q/5v1FPYV47z33cdO+3sRlvwsGJj9MagA/w6tsv57+N75PcqO/yTYXPo5DBj8LDAw/ZZuUPxncxz6UjMG+2HluPy9ilL3K7Sg/Af2PPpXEkb/y+pw9+qW3uyhZY7+yjyc/Q+ztutHn5j6ILNO9ZRdmv0P2PD8MxnK/aIncPuCcjj+YXsW/TGoAP8OrbL/Bhne+Dm8hPy7JZD4zr8c8FC7lO3zsvz3K/0C/QduWvkorbT4agdO+6EhIv2HmWz8uJDS+jHagv5ufPj8gi2c8yU09P9BGkb8tshS/ghWkPMwz3761WKK/tYnZPoRXj7/exGW/CwYmP0xqAD/Dq2y/OJkhPTl97r3nNQY/wh1qvq4aiD+BiCw+QO3gPyNYtT+DY/K+m2CGvgND3z7g0ru/U/JivmYRxj4kaTTA6fl5vDnIoD8NBru88i4hP5d8QL8H02+/dXV+PXRre79n3hk+3sRlvwsGJj9MagA/LnSKP5R0lGIu"
76
  },
77
  "_last_episode_starts": {
78
  ":type:": "<class 'numpy.ndarray'>",
 
80
  },
81
  "_last_original_obs": {
82
  ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAASIsrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICs3dU9AAAAALCb6b8AAAAAbVkyvAAAAAAuyvY/AAAAACwxCz4AAAAAq13dPwAAAACET5I9AAAAAKDD3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCFyu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUJ7WPQAAAAAUN+y/AAAAALAavj0AAAAA0PcAQAAAAABksCq9AAAAAKgM7z8AAAAAvC+APQAAAACjheu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr+cRNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJf1070AAAAAiAn3vwAAAADHUdM9AAAAABoU5D8AAAAAtdEQPgAAAACck/A/AAAAALqh07wAAAAAFKv6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZvfjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRw0S6AAAAAL2V4r8AAAAALeuMvQAAAAD2P/Y/AAAAAEyt+T0AAAAAcZf4PwAAAAA8kgg8AAAAAMUH3L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
  },
85
  "_episode_num": 0,
86
  "use_sde": true,
 
88
  "_current_progress_remaining": 0.0,
89
  "ep_info_buffer": {
90
  ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXsd6Skj5eMAWyUTegDjAF0lEdA0cUdBqKxcHV9lChoBkdAlhNeHi3ocWgHTegDaAhHQNHFWNLL6k91fZQoaAZHQJRbF7VrhzhoB03oA2gIR0DRxbQUTL4fdX2UKGgGR0CXZpMmnfl7aAdN6ANoCEdA0cYm4KhL5HV9lChoBkdAlb50mY0EYGgHTegDaAhHQNHGx9rsSkF1fZQoaAZHQJfZHWH1vl5oB03oA2gIR0DRxwOzfJmvdX2UKGgGR0CWmw58Sf16aAdN6ANoCEdA0cdhGEPDpHV9lChoBkdAlpJJ/kNnXmgHTegDaAhHQNHH1FuWKMx1fZQoaAZHQJYuLN/vv0BoB03oA2gIR0DRyHhoEjgRdX2UKGgGR0CVlxTho/RmaAdN6ANoCEdA0ci2ozeoDXV9lChoBkdAlW9nWz4UOGgHTegDaAhHQNHJEav7m+11fZQoaAZHQJUoy0IC2c9oB03oA2gIR0DRyYOkKu0UdX2UKGgGR0CVYd11W8yvaAdN6ANoCEdA0comsbNr03V9lChoBkdAlceJy+6AfGgHTegDaAhHQNHKY+GO+7F1fZQoaAZHQJVgoA93bEhoB03oA2gIR0DRysB44ZMtdX2UKGgGR0CWqNQNTcZcaAdN6ANoCEdA0cs0AEt/WnV9lChoBkdAl03hLTQVsWgHTegDaAhHQNHL2GuLaVV1fZQoaAZHQJWcDjZL7GhoB03oA2gIR0DRzBSwaBI4dX2UKGgGR0CXWwVNHpbEaAdN6ANoCEdA0cxwRUWEb3V9lChoBkdAkzbbSRbKR2gHTegDaAhHQNHM5CgkC3h1fZQoaAZHQJcnBev6j35oB03oA2gIR0DRzYcTwlSkdX2UKGgGR0CVpJntfG+9aAdN6ANoCEdA0c3DWXTmXHV9lChoBkdAlJepvHcUNGgHTegDaAhHQNHOH0k8ifR1fZQoaAZHQJagkhje9BdoB03oA2gIR0DRzpIv9LpSdX2UKGgGR0CVy8mUnogWaAdN6ANoCEdA0c8zXpGFz3V9lChoBkdAnGW4SL61s2gHTegDaAhHQNHPcIW1twd1fZQoaAZHQJiPxDx9XtBoB03oA2gIR0DRz8zJLdvbdX2UKGgGR0CYcbFdLQHBaAdN6ANoCEdA0dBEY4yXU3V9lChoBkdAlwDzLOiWV2gHTegDaAhHQNHQ643Ns311fZQoaAZHQJZ9Ve1KGtZoB03oA2gIR0DR0SlU83dcdX2UKGgGR0CTsDbW3BpIaAdN6ANoCEdA0dGFRq46O3V9lChoBkdAlCQtYW+GoWgHTegDaAhHQNHR+Cd8Rcx1fZQoaAZHQJZAFEBsANpoB03oA2gIR0DR0p2FJxvOdX2UKGgGR0CV2hUmD15CaAdN6ANoCEdA0dLbBas6rHV9lChoBkdAln3eXRgJC2gHTegDaAhHQNHTNc2aUiZ1fZQoaAZHQJdlyoKlYU5oB03oA2gIR0DR06sJBw+/dX2UKGgGR0CZB+uxrzoVaAdN6ANoCEdA0dRP2fChvnV9lChoBkdAewubL2YfGWgHTegDaAhHQNHUjNjXnQp1fZQoaAZHQJXwC9RJmNBoB03oA2gIR0DR1OkHryDqdX2UKGgGR0CVtwYWtU4raAdN6ANoCEdA0dVdd4FA3XV9lChoBkdAmIJicG1QZWgHTegDaAhHQNHWAIEGJN11fZQoaAZHQJfiTdhy8z1oB03oA2gIR0DR1j3T7VJ+dX2UKGgGR0CWIzQVbiZOaAdN6ANoCEdA0daYzcynDXV9lChoBkdAlq8WtEG7jGgHTegDaAhHQNHXC3LeQ+51fZQoaAZHQJeOeTTvy9VoB03oA2gIR0DR16954W1udX2UKGgGR0CWv3fqoqCpaAdN6ANoCEdA0dfr4gA6uHV9lChoBkdAlu3L1uivgWgHTegDaAhHQNHYTCwbEP11fZQoaAZHQJYQDww0waloB03oA2gIR0DR2MHCm/FjdX2UKGgGR0CTz6mTC+DfaAdN6ANoCEdA0dlp01qFiHV9lChoBkdAhYR3+MqBmWgHTegDaAhHQNHZpx/3Fkx1fZQoaAZHQJWBdqVQhwFoB03oA2gIR0DR2gO1y/9HdX2UKGgGR0CVZGNNJvpAaAdN6ANoCEdA0dp5i4J/onV9lChoBkdAlxj17IDHO2gHTegDaAhHQNHbGxLK3d91fZQoaAZHQJdXFxbSqlxoB03oA2gIR0DR21bh4t6HdX2UKGgGR0CYXLTnJT2naAdN6ANoCEdA0duybILgGnV9lChoBkdAl1ZuPV/c32gHTegDaAhHQNHcJKbnX/Z1fZQoaAZHQJgfFIe5nUVoB03oA2gIR0DR3MU5hjOLdX2UKGgGR0CZIrK9wm3OaAdN6ANoCEdA0d0CdE9dNXV9lChoBkdAl0V10gbIcWgHTegDaAhHQNHdXSofjjt1fZQoaAZHQJk4I97ngYRoB03oA2gIR0DR3c55LRKIdX2UKGgGR0CZBqAhje9BaAdN6ANoCEdA0d50AHE/B3V9lChoBkdAlvp6QA+6iGgHTegDaAhHQNHesNbcGkh1fZQoaAZHQI1uvKnvUjNoB03oA2gIR0DR3wv93r2QdX2UKGgGR0CYs97DEWIoaAdN6ANoCEdA0d9+aXrt3XV9lChoBkdAmLwwJTl1bWgHTegDaAhHQNHgIb1mJ3x1fZQoaAZHQJcmbHbRF7VoB03oA2gIR0DR4FzCm/FjdX2UKGgGR0CVguiu+yquaAdN6ANoCEdA0eC59jgAInV9lChoBkdAmhIEm2LHdWgHTegDaAhHQNHhLV1r6+F1fZQoaAZHQJoSjn9vS+hoB03oA2gIR0DR4c/lzU7TdX2UKGgGR0CWltu8scyWaAdN6ANoCEdA0eIMvAGjbnV9lChoBkdAmVe9DQZ4wGgHTegDaAhHQNHiaTp5eJJ1fZQoaAZHQJlZQXsPatdoB03oA2gIR0DR4tuvdM0xdX2UKGgGR0CYkmxZuAI6aAdN6ANoCEdA0eN8ZrHlwXV9lChoBkdAmHN7zbvgFWgHTegDaAhHQNHjuMSTQmh1fZQoaAZHQJXVfBJqZc9oB03oA2gIR0DR5BFjqfOEdX2UKGgGR0CZIJ2vStvGaAdN6ANoCEdA0eSCjqOcUnV9lChoBkdAlvfVcQiA2GgHTegDaAhHQNHlI4u5BkZ1fZQoaAZHQJlaiUW2w3ZoB03oA2gIR0DR5V5/kNnXdX2UKGgGR0CYqP5n13+uaAdN6ANoCEdA0eW54J/oaHV9lChoBkdAmMh71M/QjWgHTegDaAhHQNHmLFb7j1h1fZQoaAZHQJisALApKBdoB03oA2gIR0DR5tBMHryEdX2UKGgGR0CYebpY9xIbaAdN6ANoCEdA0ecLqM3qA3V9lChoBkdAmVx6L876pGgHTegDaAhHQNHnaD8HfMx1fZQoaAZHQJWnNFd9lVdoB03oA2gIR0DR592h8IAwdX2UKGgGR0CYRIP3i704aAdN6ANoCEdA0eiBfsu3+nV9lChoBkdAl9MMkMTewmgHTegDaAhHQNHovzU/fO51fZQoaAZHQJcArFfiPyVoB03oA2gIR0DR6RuW7e2vdX2UKGgGR0CZa5GsV+I/aAdN6ANoCEdA0emQ9pAUtnV9lChoBkdAmMA66OHWSWgHTegDaAhHQNHqOTPGACp1fZQoaAZHQJXVBaRp1zRoB03oA2gIR0DR6ne3UhFFdX2UKGgGR0CWra/tY0VKaAdN6ANoCEdA0erWFVT723V9lChoBkdAlsfK+nIhhmgHTegDaAhHQNHrSqhUR4B1fZQoaAZHQJgL26qbSZ1oB03oA2gIR0DR6+zUqhDgdX2UKGgGR0CWIMOqNp/PaAdN6ANoCEdA0ewoBMzuW3V9lChoBkdAmIEU7wKBumgHTegDaAhHQNHsgkx20Rh1fZQoaAZHQJajsePq9oNoB03oA2gIR0DR7PKtvGZNdX2UKGgGR0CYTkjFyaNNaAdN6ANoCEdA0e2VXp4bCXV9lChoBkdAlkoMmjTKDGgHTegDaAhHQNHt0DYNAkd1fZQoaAZHQJel5U70WdpoB03oA2gIR0DR7isomXw9dX2UKGgGR0CWv1Je3QUpaAdN6ANoCEdA0e6dscABDHVlLg=="
92
  },
93
  "ep_success_buffer": {
94
  ":type:": "<class 'collections.deque'>",
95
  ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
  },
97
+ "_n_updates": 343750,
98
  "n_steps": 8,
99
  "gamma": 0.992,
100
  "gae_lambda": 0.9,
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:141d539f7426c83e1b20eeba8d808d1166745ea6262a3128d199b63e56278d5c
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a924e01390cabad16243c1005d1336dd117d4002ced67383293b611b9d73dc4
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ad007a179fd5783c274128cc2c7863295cf0a8f4a164c7bad13cae5334bed8a5
3
  size 56766
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18c99eed01c54f2fc254ac9b4eed8eb7df9a9fe34ad440cca25cbfc8065b9c24
3
  size 56766
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f16b9c9b7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f16b9c9b830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f16b9c9b8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f16b9c9b950>", "_build": "<function ActorCriticPolicy._build at 0x7f16b9c9b9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f16b9c9ba70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f16b9c9bb00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f16b9c9bb90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f16b9c9bc20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f16b9c9bcb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f16b9c9bd40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f16b9cd7ed0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 5000000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662936393.4208202, "learning_rate": 0.00095, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP08hLXcxj8WFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAASzs0vyA60r+ffjO/fSyJvd5lBMAdsFy/DthHPhgrtz9iA56+ZOHrv5domr4zYIw+/YtDv3tXHsBslHw+lNQev5wKx78VzwnA+YJNv1opjD+6NFc+tSwbwIyhV7+RXKI9dU2XP4aW5r/AlRg/OH5hv8Es2b581PS/tPaivyzgjb5ZgIK9boBlvcBAnb+tmi0/H/EePxNkK7/1T3S/+g16PoHajb6AUl8+PyEwP1jzAz4c6jY/vdPZPsJzsL/aX0a/6zOBP+9moD4jGse9nV+TP5qSWL81Gw4/wJUYPzh+Yb9uzCg+d2iqvqxk5j6538c+UgkgP+S3NT/JzlQ/Vaf7Pgb3zr8JWiG/EGmFP7pCQz9fAZs+mY6IvyXNjr9+uUXAciLtPj2P176SPVc98tHPPx1DzT10i7c/5ppfv+pnQcCakli/NRsOP8CVGD84fmG/OFLGvV+P1L+tszu/fZxtP1y0AL9saoc/ohmevX2zr73FU6s+ReKxP3rGZL9keGS7Q4KWvlPE3j/iVWQ8/EJWPzuBT7914/o/bDVRP5N6/D9IXjW/g1ZlPWIiyT63puk+mpJYvzUbDj+iwNa/L1GRP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHbQNbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA3WiK9AAAAAPQQ678AAAAA/FLSuwAAAAA7HPA/AAAAAL67tr0AAAAAWjzrPwAAAACk9fm8AAAAAFNI/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQoNU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAw5gDvQAAAAC9RNq/AAAAAHckqT0AAAAACNX5PwAAAABinqE9AAAAAMjp/T8AAAAAIlGlvQAAAADZMuy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzIG+NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKN2db0AAAAAB+/tvwAAAACcjBY9AAAAAKSx9z8AAAAAMI6yPAAAAAAMXP8/AAAAANVkCL4AAAAAMa3avwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4bvrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDSgg0+AAAAAF28AMAAAAAAeYSrvQAAAACAT+I/AAAAAKSWpj0AAAAA+kXsPwAAAADsEd49AAAAAPH26b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJyIbzUZvUCMAWyUTegDjAF0lEdAwCEOydnTRnV9lChoBkdAnbDjeKsMiWgHTegDaAhHQMAhJ10cOsl1fZQoaAZHQJ0j8sjFAFBoB03oA2gIR0DAIXabF0gbdX2UKGgGR0CdguiuMdcTaAdN6ANoCEdAwCGT5eJHiHV9lChoBkdAmwpQ2l2vCGgHTegDaAhHQMAkao1DSgJ1fZQoaAZHQJ1yeXNTtLNoB03oA2gIR0DAJIHzpX6qdX2UKGgGR0CgE+e+mFajaAdN6ANoCEdAwCTPs7dSEXV9lChoBkdAnzaLnPmgamgHTegDaAhHQMAk7YMF2V51fZQoaAZHQJwcFHAh0QtoB03oA2gIR0DAJ9O/L1VYdX2UKGgGR0CgNLe5vtMPaAdN6ANoCEdAwCftKEnLJXV9lChoBkdAoAGWee4Cp2gHTegDaAhHQMAoPSde6Zp1fZQoaAZHQJxfEffXPJJoB03oA2gIR0DAKFqZH/cWdX2UKGgGR0CfBeac7QsxaAdN6ANoCEdAwCs0+ajN6nV9lChoBkdAndlDnJT2nWgHTegDaAhHQMArTEofCAN1fZQoaAZHQJrBK5H3DeloB03oA2gIR0DAK52GIsRQdX2UKGgGR0Cc8gK+zt1IaAdN6ANoCEdAwCu6KtPpIXV9lChoBkdAmZyhi1Aqu2gHTegDaAhHQMAukJ++dsl1fZQoaAZHQJ76Dwb2lEZoB03oA2gIR0DALqgkiUxEdX2UKGgGR0Cec8G+sYEXaAdN6ANoCEdAwC734iX6ZnV9lChoBkdAnKNQaNuLrGgHTegDaAhHQMAvFhgeA/d1fZQoaAZHQJlmKsdT5whoB03oA2gIR0DAMerMottidX2UKGgGR0CeFfT4cm0FaAdN6ANoCEdAwDICp+c6NnV9lChoBkdAneMH0K7ZnWgHTegDaAhHQMAyUS5qdpZ1fZQoaAZHQJWQgMx46fdoB03oA2gIR0DAMmz/yXlbdX2UKGgGR0CZ8lJ04iosaAdN6ANoCEdAwDVCG1x82XV9lChoBkdAnZoCGetjkWgHTegDaAhHQMA1WWGyon91fZQoaAZHQJ71TVFx4ptoB03oA2gIR0DANakRnOB2dX2UKGgGR0CdFij2SMcZaAdN6ANoCEdAwDXHbW3BpHV9lChoBkdAmVcikTHsC2gHTegDaAhHQMA4oYQz1sd1fZQoaAZHQJ37uOwPiDNoB03oA2gIR0DAOLiS5iEydX2UKGgGR0CfQoEW69TQaAdN6ANoCEdAwDkG6YE4enV9lChoBkdAmwSm4AjptGgHTegDaAhHQMA5I6bONYN1fZQoaAZHQJ4z27Ackt5oB03oA2gIR0DAO/2T3Zf2dX2UKGgGR0CYE+D5j6N3aAdN6ANoCEdAwDwVXUYsNHV9lChoBkdAmGOMvRJEpmgHTegDaAhHQMA8Yy9/SYx1fZQoaAZHQJp7crQPZqVoB03oA2gIR0DAPH+bPQfIdX2UKGgGR0Cc5108NhE0aAdN6ANoCEdAwD9QcslLOHV9lChoBkdAmdHowudwvWgHTegDaAhHQMA/aL1dxAB1fZQoaAZHQJlfk7V8Ti9oB03oA2gIR0DAP7bisGPgdX2UKGgGR0CX4ix2jfvXaAdN6ANoCEdAwD/UDdP+GXV9lChoBkdAmKNPFFUhm2gHTegDaAhHQMBCpiQtBfN1fZQoaAZHQJfGWm78Nx5oB03oA2gIR0DAQrxpDeCTdX2UKGgGR0Cc6xpzLfUGaAdN6ANoCEdAwEMJGd7OV3V9lChoBkdAnMnTAnDziGgHTegDaAhHQMBDJfh/Aj91fZQoaAZHQJ3b0I2OyVxoB03oA2gIR0DARf6RSxZ/dX2UKGgGR0CdX7m4RVZLaAdN6ANoCEdAwEYWtCiRGXV9lChoBkdAni+qo2n89GgHTegDaAhHQMBGY3UQTVV1fZQoaAZHQJf9bkbPyCpoB03oA2gIR0DARn/8uSOjdX2UKGgGR0CcLIZh8YygaAdN6ANoCEdAwElWA93bEnV9lChoBkdAm3dRFRYRumgHTegDaAhHQMBJbYRVZLZ1fZQoaAZHQJrThotcv/RoB03oA2gIR0DASbyCJ40NdX2UKGgGR0CdP6gflp49aAdN6ANoCEdAwEnZeE7GN3V9lChoBkdAnv/k8eS0SmgHTegDaAhHQMBMtYUvf0p1fZQoaAZHQJry4s6JZW9oB03oA2gIR0DATM2NYKYzdX2UKGgGR0CdZAxlQMx5aAdN6ANoCEdAwE0dcVxjrnV9lChoBkdAnbjZZntfHGgHTegDaAhHQMBNOrxiG351fZQoaAZHQJ2vkk8ifQNoB03oA2gIR0DAUBNbA1vVdX2UKGgGR0Cd6ThybQTmaAdN6ANoCEdAwFAq5PM0QHV9lChoBkdAlnNNaEBbOmgHTegDaAhHQMBQe7qyGBZ1fZQoaAZHQJ04GRQrMC9oB03oA2gIR0DAUJjDhtLtdX2UKGgGR0CftkTMqz7eaAdN6ANoCEdAwFN59y925nV9lChoBkdAmkVSobXHzmgHTegDaAhHQMBTkdLQHA11fZQoaAZHQJngEPz4DcNoB03oA2gIR0DAU+GOMl1KdX2UKGgGR0CeOuit7rs0aAdN6ANoCEdAwFP+7U5MlHV9lChoBkdAiHt83l0YCWgHTegDaAhHQMBW6cG9pRJ1fZQoaAZHQJC06ZCv5gxoB03oA2gIR0DAVwHXRPXTdX2UKGgGR0CHDPwsoUi7aAdN6ANoCEdAwFdS1IAfdXV9lChoBkdAcwy1kUbkwWgHTegDaAhHQMBXcgnc+JR1fZQoaAZHQJI9tjtoi9toB03oA2gIR0DAWlUY0l7ddX2UKGgGR0CVYnXl8w6AaAdN6ANoCEdAwFpuDB/I83V9lChoBkdAmfLsn/kvK2gHTegDaAhHQMBavBlMAWB1fZQoaAZHQJ2JA3Ov+wVoB03oA2gIR0DAWtkXP7emdX2UKGgGR0CfQVBE8aGYaAdN6ANoCEdAwF23um78N3V9lChoBkdAmbiveDWbw2gHTegDaAhHQMBdzugYgq51fZQoaAZHQJ+YDlr/KhdoB03oA2gIR0DAXh5XKbKBdX2UKGgGR0COygVt4zJqaAdN6ANoCEdAwF46xA0KqnV9lChoBkdAnAQN7fHgg2gHTegDaAhHQMBhF1Gb1AZ1fZQoaAZHQJt3lGUfPopoB03oA2gIR0DAYS+ucMEzdX2UKGgGR0Cd4hX+VC5VaAdN6ANoCEdAwGF+ZQYUFnV9lChoBkdAkl4qY/mknGgHTegDaAhHQMBhnlkH2RJ1fZQoaAZHQJlhMtjCpFVoB03oA2gIR0DAZH/kT6BRdX2UKGgGR0CdvRdPLxI8aAdN6ANoCEdAwGSXz0Yj0XV9lChoBkdAnLDhChN/OWgHTegDaAhHQMBk5t8uzyB1fZQoaAZHQJ6vr5RCQcRoB03oA2gIR0DAZQL72tdSdX2UKGgGR0CekK4L1EmZaAdN6ANoCEdAwGfb41P3z3V9lChoBkdAnma9m6GxlmgHTegDaAhHQMBn9WcawUx1fZQoaAZHQJ901BeHBUJoB03oA2gIR0DAaEW6XjU/dX2UKGgGR0CfPalI3BHkaAdN6ANoCEdAwGhjhFVktnV9lChoBkdAnUy/gNwzcmgHTegDaAhHQMBrPAOjIq91fZQoaAZHQJxfL81n/T9oB03oA2gIR0DAa1VW+49YdX2UKGgGR0CddsGWldkbaAdN6ANoCEdAwGuijHn2ZnV9lChoBkdAm1ObuQZGa2gHTegDaAhHQMBrv0mD15B1fZQoaAZHQJ0WDC2tuDVoB03oA2gIR0DAbpxM6BAfdX2UKGgGR0Cb1oInBtUGaAdN6ANoCEdAwG6ze67NCHV9lChoBkdAlH8JV81Gb2gHTegDaAhHQMBvApg9eQd1fZQoaAZHQJwc/hddE9doB03oA2gIR0DAbx9W8yvcdX2UKGgGR0CceP7+1jRVaAdN6ANoCEdAwHH2NoakynV9lChoBkdAmQwHyqdYn2gHTegDaAhHQMByDaK1og51fZQoaAZHQJXqz225QP9oB03oA2gIR0DAclnVf/m1dX2UKGgGR0CfX4jj7yhBaAdN6ANoCEdAwHJ3X2/SIHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 156250, "n_steps": 8, "gamma": 0.992, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f16b9c9b7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f16b9c9b830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f16b9c9b8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f16b9c9b950>", "_build": "<function ActorCriticPolicy._build at 0x7f16b9c9b9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f16b9c9ba70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f16b9c9bb00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f16b9c9bb90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f16b9c9bc20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f16b9c9bcb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f16b9c9bd40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f16b9cd7ed0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 11000000, "_total_timesteps": 11000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1662945513.544701, "learning_rate": 0.00095, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP08hLXcxj8WFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAzOBrvuuVuD5ybMQ+IotkPbMewzzv1K++MHdQvxH5+r74tEa+Uf2mvpNvDr2156E/TFrNvg7Lar61eUY/sXKHPv6dQD8/qVa/v4EMv7Z0Yr2RW2q/5v1FPYV47z33cdO+3sRlvwsGJj9MagA/w6tsv57+N75PcqO/yTYXPo5DBj8LDAw/ZZuUPxncxz6UjMG+2HluPy9ilL3K7Sg/Af2PPpXEkb/y+pw9+qW3uyhZY7+yjyc/Q+ztutHn5j6ILNO9ZRdmv0P2PD8MxnK/aIncPuCcjj+YXsW/TGoAP8OrbL/Bhne+Dm8hPy7JZD4zr8c8FC7lO3zsvz3K/0C/QduWvkorbT4agdO+6EhIv2HmWz8uJDS+jHagv5ufPj8gi2c8yU09P9BGkb8tshS/ghWkPMwz3761WKK/tYnZPoRXj7/exGW/CwYmP0xqAD/Dq2y/OJkhPTl97r3nNQY/wh1qvq4aiD+BiCw+QO3gPyNYtT+DY/K+m2CGvgND3z7g0ru/U/JivmYRxj4kaTTA6fl5vDnIoD8NBru88i4hP5d8QL8H02+/dXV+PXRre79n3hk+3sRlvwsGJj9MagA/LnSKP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAASIsrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICs3dU9AAAAALCb6b8AAAAAbVkyvAAAAAAuyvY/AAAAACwxCz4AAAAAq13dPwAAAACET5I9AAAAAKDD3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABCFyu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUJ7WPQAAAAAUN+y/AAAAALAavj0AAAAA0PcAQAAAAABksCq9AAAAAKgM7z8AAAAAvC+APQAAAACjheu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr+cRNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJf1070AAAAAiAn3vwAAAADHUdM9AAAAABoU5D8AAAAAtdEQPgAAAACck/A/AAAAALqh07wAAAAAFKv6vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADZvfjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBRw0S6AAAAAL2V4r8AAAAALeuMvQAAAAD2P/Y/AAAAAEyt+T0AAAAAcZf4PwAAAAA8kgg8AAAAAMUH3L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJXsd6Skj5eMAWyUTegDjAF0lEdA0cUdBqKxcHV9lChoBkdAlhNeHi3ocWgHTegDaAhHQNHFWNLL6k91fZQoaAZHQJRbF7VrhzhoB03oA2gIR0DRxbQUTL4fdX2UKGgGR0CXZpMmnfl7aAdN6ANoCEdA0cYm4KhL5HV9lChoBkdAlb50mY0EYGgHTegDaAhHQNHGx9rsSkF1fZQoaAZHQJfZHWH1vl5oB03oA2gIR0DRxwOzfJmvdX2UKGgGR0CWmw58Sf16aAdN6ANoCEdA0cdhGEPDpHV9lChoBkdAlpJJ/kNnXmgHTegDaAhHQNHH1FuWKMx1fZQoaAZHQJYuLN/vv0BoB03oA2gIR0DRyHhoEjgRdX2UKGgGR0CVlxTho/RmaAdN6ANoCEdA0ci2ozeoDXV9lChoBkdAlW9nWz4UOGgHTegDaAhHQNHJEav7m+11fZQoaAZHQJUoy0IC2c9oB03oA2gIR0DRyYOkKu0UdX2UKGgGR0CVYd11W8yvaAdN6ANoCEdA0comsbNr03V9lChoBkdAlceJy+6AfGgHTegDaAhHQNHKY+GO+7F1fZQoaAZHQJVgoA93bEhoB03oA2gIR0DRysB44ZMtdX2UKGgGR0CWqNQNTcZcaAdN6ANoCEdA0cs0AEt/WnV9lChoBkdAl03hLTQVsWgHTegDaAhHQNHL2GuLaVV1fZQoaAZHQJWcDjZL7GhoB03oA2gIR0DRzBSwaBI4dX2UKGgGR0CXWwVNHpbEaAdN6ANoCEdA0cxwRUWEb3V9lChoBkdAkzbbSRbKR2gHTegDaAhHQNHM5CgkC3h1fZQoaAZHQJcnBev6j35oB03oA2gIR0DRzYcTwlSkdX2UKGgGR0CVpJntfG+9aAdN6ANoCEdA0c3DWXTmXHV9lChoBkdAlJepvHcUNGgHTegDaAhHQNHOH0k8ifR1fZQoaAZHQJagkhje9BdoB03oA2gIR0DRzpIv9LpSdX2UKGgGR0CVy8mUnogWaAdN6ANoCEdA0c8zXpGFz3V9lChoBkdAnGW4SL61s2gHTegDaAhHQNHPcIW1twd1fZQoaAZHQJiPxDx9XtBoB03oA2gIR0DRz8zJLdvbdX2UKGgGR0CYcbFdLQHBaAdN6ANoCEdA0dBEY4yXU3V9lChoBkdAlwDzLOiWV2gHTegDaAhHQNHQ643Ns311fZQoaAZHQJZ9Ve1KGtZoB03oA2gIR0DR0SlU83dcdX2UKGgGR0CTsDbW3BpIaAdN6ANoCEdA0dGFRq46O3V9lChoBkdAlCQtYW+GoWgHTegDaAhHQNHR+Cd8Rcx1fZQoaAZHQJZAFEBsANpoB03oA2gIR0DR0p2FJxvOdX2UKGgGR0CV2hUmD15CaAdN6ANoCEdA0dLbBas6rHV9lChoBkdAln3eXRgJC2gHTegDaAhHQNHTNc2aUiZ1fZQoaAZHQJdlyoKlYU5oB03oA2gIR0DR06sJBw+/dX2UKGgGR0CZB+uxrzoVaAdN6ANoCEdA0dRP2fChvnV9lChoBkdAewubL2YfGWgHTegDaAhHQNHUjNjXnQp1fZQoaAZHQJXwC9RJmNBoB03oA2gIR0DR1OkHryDqdX2UKGgGR0CVtwYWtU4raAdN6ANoCEdA0dVdd4FA3XV9lChoBkdAmIJicG1QZWgHTegDaAhHQNHWAIEGJN11fZQoaAZHQJfiTdhy8z1oB03oA2gIR0DR1j3T7VJ+dX2UKGgGR0CWIzQVbiZOaAdN6ANoCEdA0daYzcynDXV9lChoBkdAlq8WtEG7jGgHTegDaAhHQNHXC3LeQ+51fZQoaAZHQJeOeTTvy9VoB03oA2gIR0DR16954W1udX2UKGgGR0CWv3fqoqCpaAdN6ANoCEdA0dfr4gA6uHV9lChoBkdAlu3L1uivgWgHTegDaAhHQNHYTCwbEP11fZQoaAZHQJYQDww0waloB03oA2gIR0DR2MHCm/FjdX2UKGgGR0CTz6mTC+DfaAdN6ANoCEdA0dlp01qFiHV9lChoBkdAhYR3+MqBmWgHTegDaAhHQNHZpx/3Fkx1fZQoaAZHQJWBdqVQhwFoB03oA2gIR0DR2gO1y/9HdX2UKGgGR0CVZGNNJvpAaAdN6ANoCEdA0dp5i4J/onV9lChoBkdAlxj17IDHO2gHTegDaAhHQNHbGxLK3d91fZQoaAZHQJdXFxbSqlxoB03oA2gIR0DR21bh4t6HdX2UKGgGR0CYXLTnJT2naAdN6ANoCEdA0duybILgGnV9lChoBkdAl1ZuPV/c32gHTegDaAhHQNHcJKbnX/Z1fZQoaAZHQJgfFIe5nUVoB03oA2gIR0DR3MU5hjOLdX2UKGgGR0CZIrK9wm3OaAdN6ANoCEdA0d0CdE9dNXV9lChoBkdAl0V10gbIcWgHTegDaAhHQNHdXSofjjt1fZQoaAZHQJk4I97ngYRoB03oA2gIR0DR3c55LRKIdX2UKGgGR0CZBqAhje9BaAdN6ANoCEdA0d50AHE/B3V9lChoBkdAlvp6QA+6iGgHTegDaAhHQNHesNbcGkh1fZQoaAZHQI1uvKnvUjNoB03oA2gIR0DR3wv93r2QdX2UKGgGR0CYs97DEWIoaAdN6ANoCEdA0d9+aXrt3XV9lChoBkdAmLwwJTl1bWgHTegDaAhHQNHgIb1mJ3x1fZQoaAZHQJcmbHbRF7VoB03oA2gIR0DR4FzCm/FjdX2UKGgGR0CVguiu+yquaAdN6ANoCEdA0eC59jgAInV9lChoBkdAmhIEm2LHdWgHTegDaAhHQNHhLV1r6+F1fZQoaAZHQJoSjn9vS+hoB03oA2gIR0DR4c/lzU7TdX2UKGgGR0CWltu8scyWaAdN6ANoCEdA0eIMvAGjbnV9lChoBkdAmVe9DQZ4wGgHTegDaAhHQNHiaTp5eJJ1fZQoaAZHQJlZQXsPatdoB03oA2gIR0DR4tuvdM0xdX2UKGgGR0CYkmxZuAI6aAdN6ANoCEdA0eN8ZrHlwXV9lChoBkdAmHN7zbvgFWgHTegDaAhHQNHjuMSTQmh1fZQoaAZHQJXVfBJqZc9oB03oA2gIR0DR5BFjqfOEdX2UKGgGR0CZIJ2vStvGaAdN6ANoCEdA0eSCjqOcUnV9lChoBkdAlvfVcQiA2GgHTegDaAhHQNHlI4u5BkZ1fZQoaAZHQJlaiUW2w3ZoB03oA2gIR0DR5V5/kNnXdX2UKGgGR0CYqP5n13+uaAdN6ANoCEdA0eW54J/oaHV9lChoBkdAmMh71M/QjWgHTegDaAhHQNHmLFb7j1h1fZQoaAZHQJisALApKBdoB03oA2gIR0DR5tBMHryEdX2UKGgGR0CYebpY9xIbaAdN6ANoCEdA0ecLqM3qA3V9lChoBkdAmVx6L876pGgHTegDaAhHQNHnaD8HfMx1fZQoaAZHQJWnNFd9lVdoB03oA2gIR0DR592h8IAwdX2UKGgGR0CYRIP3i704aAdN6ANoCEdA0eiBfsu3+nV9lChoBkdAl9MMkMTewmgHTegDaAhHQNHovzU/fO51fZQoaAZHQJcArFfiPyVoB03oA2gIR0DR6RuW7e2vdX2UKGgGR0CZa5GsV+I/aAdN6ANoCEdA0emQ9pAUtnV9lChoBkdAmMA66OHWSWgHTegDaAhHQNHqOTPGACp1fZQoaAZHQJXVBaRp1zRoB03oA2gIR0DR6ne3UhFFdX2UKGgGR0CWra/tY0VKaAdN6ANoCEdA0erWFVT723V9lChoBkdAlsfK+nIhhmgHTegDaAhHQNHrSqhUR4B1fZQoaAZHQJgL26qbSZ1oB03oA2gIR0DR6+zUqhDgdX2UKGgGR0CWIMOqNp/PaAdN6ANoCEdA0ewoBMzuW3V9lChoBkdAmIEU7wKBumgHTegDaAhHQNHsgkx20Rh1fZQoaAZHQJajsePq9oNoB03oA2gIR0DR7PKtvGZNdX2UKGgGR0CYTkjFyaNNaAdN6ANoCEdA0e2VXp4bCXV9lChoBkdAlkoMmjTKDGgHTegDaAhHQNHt0DYNAkd1fZQoaAZHQJel5U70WdpoB03oA2gIR0DR7isomXw9dX2UKGgGR0CWv1Je3QUpaAdN6ANoCEdA0e6dscABDHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 343750, "n_steps": 8, "gamma": 0.992, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d878a7f2c57482f7abb57be7f5087a735939497dfe27d87226a2701952cbd32a
3
- size 1103890
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc125f006811dea333183ae0488e6c7d713e4a526bd11394860fc9ab9a519561
3
+ size 957113
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1426.75810561346, "std_reward": 368.7147463227687, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-12T01:07:39.316365"}
 
1
+ {"mean_reward": 1416.2360596470069, "std_reward": 70.50500376933176, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-12T06:25:22.017934"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d2341e289d56ac2dfbed44e82ca65ecfa96cec314101a7e735aa5c96a4aaee36
3
  size 2763
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dc90ff094a48eb49b4ecc6579b3bff70488e5f22683831abf85c19d0c031809
3
  size 2763