jackoyoungblood
commited on
Commit
•
40596a4
1
Parent(s):
b6c5cfa
End of training
Browse files- README.md +15 -25
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss:
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -52,39 +52,29 @@ More information needed
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
-
- learning_rate: 0.
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.0023 | 11.0 | 1243 | 1.1693 | 0.82 |
|
79 |
-
| 0.1901 | 12.0 | 1356 | 1.2588 | 0.82 |
|
80 |
-
| 0.0006 | 13.0 | 1469 | 1.2267 | 0.8 |
|
81 |
-
| 0.0005 | 14.0 | 1582 | 1.3400 | 0.81 |
|
82 |
-
| 0.0005 | 15.0 | 1695 | 1.1049 | 0.83 |
|
83 |
-
| 0.0004 | 16.0 | 1808 | 1.3025 | 0.8 |
|
84 |
-
| 0.1313 | 17.0 | 1921 | 1.2627 | 0.81 |
|
85 |
-
| 0.0003 | 18.0 | 2034 | 1.1620 | 0.84 |
|
86 |
-
| 0.0003 | 19.0 | 2147 | 1.2217 | 0.82 |
|
87 |
-
| 0.0003 | 20.0 | 2260 | 1.2523 | 0.82 |
|
88 |
|
89 |
|
90 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.89
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6889
|
36 |
+
- Accuracy: 0.89
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
52 |
### Training hyperparameters
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.00018
|
56 |
- train_batch_size: 8
|
57 |
- eval_batch_size: 8
|
58 |
- seed: 42
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 10
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 1.7089 | 1.0 | 113 | 1.3908 | 0.47 |
|
69 |
+
| 1.0384 | 2.0 | 226 | 1.0306 | 0.65 |
|
70 |
+
| 0.9678 | 3.0 | 339 | 0.9619 | 0.66 |
|
71 |
+
| 0.9463 | 4.0 | 452 | 0.5874 | 0.8 |
|
72 |
+
| 0.5288 | 5.0 | 565 | 0.6033 | 0.83 |
|
73 |
+
| 0.1325 | 6.0 | 678 | 0.6730 | 0.87 |
|
74 |
+
| 0.2124 | 7.0 | 791 | 0.7158 | 0.84 |
|
75 |
+
| 0.0054 | 8.0 | 904 | 0.7187 | 0.86 |
|
76 |
+
| 0.004 | 9.0 | 1017 | 0.6297 | 0.88 |
|
77 |
+
| 0.0026 | 10.0 | 1130 | 0.6889 | 0.89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94783376
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:773cbdd4222742562d3de24f2dde22a5c14bf25a19fab44b2765a715e2f029a6
|
3 |
size 94783376
|