jackoyoungblood commited on
Commit
c75c1e2
·
1 Parent(s): bba9b4d

End of training

Browse files
Files changed (1) hide show
  1. README.md +26 -17
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
 
 
8
  model-index:
9
  - name: distilhubert-finetuned-gtzan
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,7 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.4454
 
21
 
22
  ## Model description
23
 
@@ -36,33 +52,26 @@ More information needed
36
  ### Training hyperparameters
37
 
38
  The following hyperparameters were used during training:
39
- - learning_rate: 9.349509030319398e-05
40
- - train_batch_size: 12
41
  - eval_batch_size: 8
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_ratio: 0.1
46
- - num_epochs: 9
47
 
48
  ### Training results
49
 
50
- | Training Loss | Epoch | Step | Validation Loss |
51
- |:-------------:|:-----:|:----:|:---------------:|
52
- | 1.904 | 1.0 | 75 | 1.7595 |
53
- | 1.2214 | 2.0 | 150 | 1.1147 |
54
- | 0.862 | 3.0 | 225 | 0.7765 |
55
- | 0.6679 | 4.0 | 300 | 0.6600 |
56
- | 0.4188 | 5.0 | 375 | 0.4797 |
57
- | 0.3369 | 6.0 | 450 | 0.5607 |
58
- | 0.1591 | 7.0 | 525 | 0.4668 |
59
- | 0.0591 | 8.0 | 600 | 0.4493 |
60
- | 0.0718 | 9.0 | 675 | 0.4454 |
61
 
62
 
63
  ### Framework versions
64
 
65
  - Transformers 4.32.1
66
- - Pytorch 2.0.1+cu118
67
  - Datasets 2.14.4
68
  - Tokenizers 0.13.3
 
5
  - generated_from_trainer
6
  datasets:
7
  - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.66
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 1.0372
36
+ - Accuracy: 0.66
37
 
38
  ## Model description
39
 
 
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
+ - learning_rate: 0.00011651033424866663
56
+ - train_batch_size: 8
57
  - eval_batch_size: 8
58
  - seed: 42
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 2
63
 
64
  ### Training results
65
 
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 1.6048 | 1.0 | 113 | 1.2967 | 0.6 |
69
+ | 1.0543 | 2.0 | 226 | 1.0372 | 0.66 |
 
 
 
 
 
 
 
70
 
71
 
72
  ### Framework versions
73
 
74
  - Transformers 4.32.1
75
+ - Pytorch 1.13.1
76
  - Datasets 2.14.4
77
  - Tokenizers 0.13.3