--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.349509030319398e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 9 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.904 | 1.0 | 75 | 1.7595 | | 1.2214 | 2.0 | 150 | 1.1147 | | 0.862 | 3.0 | 225 | 0.7765 | | 0.6679 | 4.0 | 300 | 0.6600 | | 0.4188 | 5.0 | 375 | 0.4797 | | 0.3369 | 6.0 | 450 | 0.5607 | | 0.1591 | 7.0 | 525 | 0.4668 | | 0.0591 | 8.0 | 600 | 0.4493 | | 0.0718 | 9.0 | 675 | 0.4454 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3