--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.82 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2523 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7948 | 1.0 | 113 | 1.6788 | 0.46 | | 1.164 | 2.0 | 226 | 1.1871 | 0.54 | | 0.8531 | 3.0 | 339 | 1.0579 | 0.66 | | 0.8304 | 4.0 | 452 | 0.8808 | 0.73 | | 0.2531 | 5.0 | 565 | 0.9542 | 0.74 | | 0.3144 | 6.0 | 678 | 1.0149 | 0.78 | | 0.2775 | 7.0 | 791 | 0.8875 | 0.77 | | 0.0521 | 8.0 | 904 | 1.2458 | 0.78 | | 0.0106 | 9.0 | 1017 | 0.9013 | 0.81 | | 0.0088 | 10.0 | 1130 | 0.9802 | 0.84 | | 0.0023 | 11.0 | 1243 | 1.1693 | 0.82 | | 0.1901 | 12.0 | 1356 | 1.2588 | 0.82 | | 0.0006 | 13.0 | 1469 | 1.2267 | 0.8 | | 0.0005 | 14.0 | 1582 | 1.3400 | 0.81 | | 0.0005 | 15.0 | 1695 | 1.1049 | 0.83 | | 0.0004 | 16.0 | 1808 | 1.3025 | 0.8 | | 0.1313 | 17.0 | 1921 | 1.2627 | 0.81 | | 0.0003 | 18.0 | 2034 | 1.1620 | 0.84 | | 0.0003 | 19.0 | 2147 | 1.2217 | 0.82 | | 0.0003 | 20.0 | 2260 | 1.2523 | 0.82 | ### Framework versions - Transformers 4.32.1 - Pytorch 1.13.1 - Datasets 2.14.4 - Tokenizers 0.13.3