File size: 3,277 Bytes
dd4efc7
 
 
 
 
 
 
 
 
8f4b3a0
dd4efc7
 
 
8f4b3a0
dd4efc7
 
8f4b3a0
dd4efc7
 
8f4b3a0
dd4efc7
 
 
 
8f4b3a0
dd4efc7
 
 
 
8f4b3a0
dd4efc7
8f4b3a0
dd4efc7
8f4b3a0
dd4efc7
8f4b3a0
dd4efc7
8f4b3a0
dd4efc7
59524ac
dd4efc7
59524ac
dd4efc7
 
 
 
 
 
 
8f4b3a0
dd4efc7
 
59524ac
dd4efc7
 
59524ac
dd4efc7
59524ac
dd4efc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import subprocess
import os
import subprocess
from PIL import Image, ImageDraw
import re
import json
import subprocess

def process_inference_results(results):
    """
    Process the inference results by:
    1. Adding bounding boxes on the image based on the coordinates in 'text'.
    2. Extracting and returning the text prompt.
    
    :param results: List of inference results with bounding boxes in 'text'.
    :return: (image, text)
    """
    processed_images = []
    extracted_texts = []

    for result in results:
        image_path = result['image_path']
        img = Image.open(image_path).convert("RGB")
        draw = ImageDraw.Draw(img)

        bbox_str = re.search(r'\[\[([0-9,\s]+)\]\]', result['text'])
        if bbox_str:
            bbox = [int(coord) for coord in bbox_str.group(1).split(',')]
            x1, y1, x2, y2 = bbox

            draw.rectangle([x1, y1, x2, y2], outline="red", width=3)

        extracted_texts.append(result['text'])

        processed_images.append(img)

    return processed_images, extracted_texts

def inference_and_run(image_path, prompt, conv_mode="ferret_llama_3", model_path="jadechoghari/Ferret-UI-Llama8b", box=None):
    """
    Run the inference and capture the errors for debugging.
    """
    data_input = [{
        "id": 0,
        "image": os.path.basename(image_path),
        "image_h": Image.open(image_path).height,
        "image_w": Image.open(image_path).width,
        "conversations": [{"from": "human", "value": f"<image>\n{prompt}"}]
    }]
    
    if box:
        data_input[0]["box_x1y1x2y2"] = [[box]]

    with open("eval.json", "w") as json_file:
        json.dump(data_input, json_file)
    
    print("eval.json file created successfully.")
    
    cmd = [
        "python", "-m", "model_UI", 
        "--model_path", model_path,
        "--data_path", "eval.json", 
        "--image_path", ".", 
        "--answers_file", "eval_output.jsonl", 
        "--num_beam", "1", 
        "--max_new_tokens", "32",
        "--conv_mode", conv_mode
    ]


    if box:
        cmd.extend(["--region_format", "box", "--add_region_feature"])

    try:
        result = subprocess.run(cmd, check=True, capture_output=True, text=True)
        print(f"Subprocess output:\n{result.stdout}")
        print(f"Subprocess error (if any):\n{result.stderr}")
        print(f"Inference completed. Output written to eval_output.jsonl")

        output_folder = 'eval_output.jsonl'
        if os.path.exists(output_folder):
            json_files = [f for f in os.listdir(output_folder) if f.endswith(".jsonl")]
            if json_files:
                output_file_path = os.path.join(output_folder, json_files[0])
                with open(output_file_path, "r") as output_file:
                    results = [json.loads(line) for line in output_file]
                
                return process_inference_results(results)
            else:
                print("No output JSONL files found.")
                return None, None
        else:
            print("Output folder not found.")
            return None, None

    except subprocess.CalledProcessError as e:
        print(f"Error occurred during inference:\n{e}")
        print(f"Subprocess output:\n{e.output}")
        return None, None